Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
sdjo
Xem chi tiết
HT.Phong (9A5)
10 tháng 11 2023 lúc 19:13

Đặt: \(A=1+3+3^2+3^3+...+3^{1991}\)

\(3A=3+3^2+3^3+...+3^{1992}\)

\(3A-A=3+3^2+3^3+...+3^{1992}-1-3-3^2-...-3^{1991}\)

\(2A=3^{1992}-1\)

\(A=\dfrac{3^{1992}-1}{2}\)

sdjo
10 tháng 11 2023 lúc 19:14

ỦA SAO SAI SAI

 

sdjo
10 tháng 11 2023 lúc 19:15

CHIA HẾT CHO 41 NHA

Vũ Thu Trang
Xem chi tiết

Ta có: B= 3 + 3
3 + 3
5 + ... + 3
1991= ﴾3 + 3
3 + 3
5
﴿ + ﴾3
7+ 3
9 + 3
11
﴿ + ... + ﴾3
1987 + 3
1989 + 3
1991
﴿.
= 3 x ﴾1 + 3
2 + 3
4
﴿ + 3
7 x ﴾1 + 3
2 + 3
4
﴿ + ... + 3
1987 x ﴾1 + 3
2 + 3
4
﴿.
= 3 x 91 + 3
7 x 91 + ... + 3
1987 x 91= 3 x 7 x 13 + 3
7 x 7 x 13 + ... + 3
1987 x 7 x 13.
= 13 x ﴾ 3 x 7 + 3
7 x 7 + ... + 3
1987 x 7﴿.
Vì B = 13 x ﴾ 3 x 7 + 3
7 x 7 + ... + 3
1987 x 7﴿ nên B chia hết cho 13.
B= ﴾3 + 3
3 + 3
5 + 3
7
﴿ + ... + ﴾3
1985 + 3
1987 + 3
1989 + 3
1991
﴿.
= 3 x ﴾1 + 3
2 + 3
4 + 3
6
﴿ + ... + 3
1985 x ﴾1 + 3
2 + 3
4 + 3
6
﴿.
= 3 x 820 + ... + 3
1985 x 820= 3 x 20 x 41 + ... + 3
1985 x 20 x 41.
= 41 x ﴾ 3 x 20 + .. + 3
1985 x 20﴿
Vì B =41 x ﴾ 3 x 20 + .. + 3
1985 x 20﴿ nên B chia hết cho 41.

TK NHA

Ta có: B= 3 + 3 3 + 3 5 + ... + 3 1991= ﴾3 + 3 3 + 3 5 ﴿ + ﴾3 7+ 3 9 + 3 11 ﴿ + ... + ﴾3 1987 + 3 1989 + 3 1991 ﴿. = 3 x ﴾1 + 3 2 + 3 4 ﴿ + 3 7 x ﴾1 + 3 2 + 3 4 ﴿ + ... + 3 1987 x ﴾1 + 3 2 + 3 4 ﴿. = 3 x 91 + 3 7 x 91 + ... + 3 1987 x 91= 3 x 7 x 13 + 3 7 x 7 x 13 + ... + 3 1987 x 7 x 13. = 13 x ﴾ 3 x 7 + 3 7 x 7 + ... + 3 1987 x 7﴿. Vì B = 13 x ﴾ 3 x 7 + 3 7 x 7 + ... + 3 1987 x 7﴿ nên B chia hết cho 13.

B= ﴾3 + 3 3 + 3 5 + 3 7 ﴿ + ... + ﴾3 1985 + 3 1987 + 3 1989 + 3 1991 ﴿. = 3 x ﴾1 + 3 2 + 3 4 + 3 6 ﴿ + ... + 3 1985 x ﴾1 + 3 2 + 3 4 + 3 6 ﴿. = 3 x 820 + ... + 3 1985 x 820= 3 x 20 x 41 + ... + 3 1985 x 20 x 41. = 41 x ﴾ 3 x 20 + .. + 3 1985 x 20﴿ Vì B =41 x ﴾ 3 x 20 + .. + 3 1985 x 20﴿ nên B chia hết cho 41. 

Phương Trình Hai Ẩn
19 tháng 8 2017 lúc 9:37

A = 3 + 32 + 33 + ... + 31991

=> A=(3+32+33)+....+(31989+31990+31991)

=> A=3.(1+3+32)+....+31989.(1+3+32)

=> A=3.13+....+31989.13

=> A=13.(3+...+31989)

=> A chia hết cho 13

còn câu b mk nghĩ là chia hết cho 40 thì ms đúng

crewmate
Xem chi tiết
Hiền Thương
10 tháng 12 2020 lúc 5:10

a, Chứng minh rằng A chia hết cho 3 

A = 2 + 22 + 23 + .....+ 260 

A = ( 2+22 ) + (23 + 24 ) + .....+ (259 + 260 )

A  = 2(1+2 ) + 23(1+2) +,...+  259(1+2)

A = 2.3 + 23.3 +  ....+259.3 

A = 3(2+23+....+259 ) \(⋮3\) 

=> đpcm 

chứng minh ằng A chia hết cho 7 

A = 2+22 + 23 + .....+ 260

A = ( 2+22 + 23 ) + (2+ 25 + 26) + .... + (258+259+260)

A = 2(1+2 +22 ) +2(1+2 +22 ) + .... +258(1+2 +22 )

A = 2.7 +24.7  + ....+258.7 

A= 7(2+24 ....+258 )\(⋮7\)

=> đpcm

Chứng minh A chia hết cho 15 

A = 2 + 22 + 23 + .....+ 260 

A = ( 2 + 22 + 23 +24 ) +....+  (257 + 258 + 259 + 260 ) 

A = 2(1+2+22 + 23 ) + .....+ 257(1+2+22+23)

A = 2.15 + ....+ 257.15

A = 15.(2+...+257\(⋮15\) 

=> đpcm  

b,

chứng minh chia hết cho 13

 B= 3 + 33 + 35 + +  ..........+ 31991 

B = (3+33 + 35 ) + (37  + 39 +311 ) + ......+ (31987 + 31989 + 31991 ) 

B = 3(1+32 +34 ) + 37(1+32 + 34 ) + ....+ 31987(1+32 + 34 )

B = 3.91 + 37.91 + ...+ 31987.91 

B = 91(3+37 + ... 31987 ) 

B = 7.13.(3+37 + ... 31987 )  \(⋮13\) 

=> đpcm 

chứng minh chia hết cho 41 

B = 3+33 + 35 + ...+ 31991

B = (3+33 + 3 + 37 ) + ...(31985 + 31987 + 31989 + 31991  ) 

B = 3(1+32 + 34 + 36 ) + ...+ 31985(1+32 + 34 + 36)

B = 3. 820 + ...+ 31985.820

B = 820(3+...+31985)

B = 20.41 (3+...+31985\(⋮41\) 

=> đpcm

Khách vãng lai đã xóa
YÊU ĐƠN PHƯƠNG
Xem chi tiết
YÊU ĐƠN PHƯƠNG
5 tháng 10 2017 lúc 13:17

help me !!!!!!!!!!!!!!!

Nijino Yume
5 tháng 10 2017 lúc 13:26

a) A= (2+22)+(23+24)+........(259+260)

= 1(2+22) + 22(2+22) + ....... 258(2+22)

= 1.6 + 22.6 +......... 258.6

=6(1+22+.......258)

Vì 6 chia hết cho 3 nên => 6(1+22+........258)

Các câu còn lại cũng tương tự như vậy nha bn!

Nijino Yume
5 tháng 10 2017 lúc 13:28

Thêm: chia hết cho 3

hay A chia hết cho 3

Vào phần vì 6 chia hết........... cho mk nha!

phát nguyễn
Xem chi tiết
Đoàn Phương Thanh
30 tháng 7 2016 lúc 20:56

B=(3+3^5)+(3^2+3^6)+...+(3^1987+3^1991)

B=3*(1+3^4)+3^2*(1+3^4)+...+3^1987*(1+3^4)

B=3*82+3^2*82+...+3^1987*82

B=82*(3+3^2+...+3^1987)

B=41*2*(3+3^2+...+3^1987)

Nên B chia hết cho 41

Nguyễn Phương Uyên
Xem chi tiết
Eternal friendship
15 tháng 12 2017 lúc 16:45

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +2+ 23) + (2+ 2 + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 2+ 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 3+ 37) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 3 + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

     
Ad
14 tháng 10 2018 lúc 8:47

a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)

\(=3\times91+3^7\times91+...+3^{1987}\times91\)

\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)

\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)

Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.

b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)

\(=3\times820+...+3^{1985}\times820\)

\(=3\times20\times41+...+3^{1985}\times20\times41\)

\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)

Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.

Đỗ quyết Tiến
22 tháng 2 lúc 20:01

Đcm

 

Công Chúa Huyền Trang
Xem chi tiết
Hằng Phạm
17 tháng 7 2016 lúc 20:20

A = 2 + 22 + ... + 260 chia hết cho 3 
=> ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 259 + 260 ) 
=> 2( 1 + 2 ) + 23( 1 + 2 ) + .... + 259( 1 + 2 ) 
=> 2 . 3 + 23 . 3 + .... + 259 . 3 
=> 3( 2 + ..... + 259 ) 
=> chia hết cho 3 
Những câu khác bạn làm tương tự nhé , tùy vào từng câu mà gộp nhiều hay ít thôi 
GOODLUCK !

Công Chúa Huyền Trang
17 tháng 7 2016 lúc 20:43

Tức là làm theo từng trường hợp á hả

Nguyễn Thị Kim Anh
Xem chi tiết
kurosaki ichigo
3 tháng 10 2015 lúc 18:09

A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}

={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}

=2{1+2}+2^3{1+2}+...+2^59{1+2}

=2.3+2^3.3+.....+2^59.3

=3.(2+2^3+...+2^59)

vi co thua so 3 => tich do chia het cho 3

Nguyễn Trọng Phúc
12 tháng 10 2022 lúc 20:40

A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}

={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}

=2{1+2}+2^3{1+2}+...+2^59{1+2}

=2.3+2^3.3+.....+2^59.3

=3.(2+2^3+...+2^59)

vi co thua so 3 => tich do chia het cho 3

Yukiko99
Xem chi tiết
Đoàn Trần Quỳnh Hương
10 tháng 1 2023 lúc 20:27

B=1+3+\(3^2\)+\(3^3\)+....+\(3^{1991}\)

B=1+3+\(3^2\)+\(3^3\)+....+\(3^{1991}\)

=(1+3+\(3^2\)+\(3^3\))+(\(3^4\)+\(3^5\)+\(3^6\)+\(3^7\))+.....+(\(3^{1988}\)+\(3^{1989}\)+\(3^{1990}\)+\(3^{1991}\))

=(1+\(3^4\))(1+3+\(3^2\)+\(3^3\))(\(3^8\)+....+\(3^{1988}\))

=82.(1+3+\(3^2\)+\(3^3\))(\(3^8\)+....+\(3^{1988}\))

Vì 82⋮41

→E⋮41

→B⋮41(đpcm)

Đoàn Trần Quỳnh Hương
10 tháng 1 2023 lúc 20:21

Bạn tham khảo nha: 

B=1+3+32+33+....+31991B=1+3+32+33+....+31991

=(1+3+32+33)+(34+35+36+37)+.....+(31988+31989+31990+31991)=(1+3+32+33)+(34+35+36+37)+.....+(31988+31989+31990+31991)

=(1+3+32+33)+34(1+3+32+33)+....+31988(1+3+32+33)=(1+3+32+33)+34(1+3+32+33)+....+31988(1+3+32+33)

=(1+3+32+33)+(1+34+....+31988)=(1+3+32+33)+(1+34+....+31988)

=(1+34)(1+3+32+33)(38+....+31988)=(1+34)(1+3+32+33)(38+....+31988)

=82.(1+3+32+33)(38+....+31988)=82.(1+3+32+33)(38+....+31988)

Vì 82⋮4182⋮41

→82.(1+3+32+33)(38+....+31988)⋮41→82.(1+3+32+33)(38+....+31988)⋮41

→B⋮41(đpcm)