Cho tam giác ABC có AB=AC và góc B bằng góc C
Lấy điểm D trên cạnh AB, E trên cạnh AC sao cho AD=AE
Gọi I là giao điểm của BE và CD. CMR tam giác IBD bằng tam giác ICE
cho tam giác ABC có góc A = 90 độ và AB < AC. trên tia AC lấy điểm D sao cho AB = AD . trên tia đối của tia AB lấy điểm E sao cho AE = AC
a) CMR DE _|_ BC
b) Cho biết 4 lần góc B = 5 lần góc C. Tính góc ADE
Cho Tam giác ADC vuông tại A (AB>AC) . Trên tia đối của tia AC lấy điểm D sao cho AD=AB , trên tia đối của tia AB lấy điểm E sao cho AE=AC; AB=16cm ; AC=12cm
Chứng minh a) tam giác ABC = tam giác ADE
B) góc ADE = góc ACE =45độ
c) tính cạnh DE
( lập giả thuyết kết luận giúp mik luôn ạ )
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
=>ΔABC=ΔADE
b: ΔACE vuông cân tại A
=>góc ACE=45 độ
c: DE=BC=căn 12^2+16^2=20cm
1) Cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt BC ở D. Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ABD = tam giác AED
b) C/m AD vuông góc với BE
c) Chứng minh góc ADB < góc ADC
2) Cho tam giác ABC có AB<AC, AD là tia phân giác của góc BAC ( D thuộc BC ). Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ADB = tam giác ADE
b) Gọi F là giao điểm của tia AB và tia ED. Chứng minh tam giác BFD = tam giác ECD
c) So sánh DB và DC
Cho tam giác ABC có AC > AB. Trên cạnh AC lấy điểm D sao cho AD = AB. Kẻ AE là tia phân giác của góc A. Chứng minh rằng: a) Tam giác ABE = tam giác ADE b) Tạm giác BED là tâm giác cân. c) Góc ADE > góc C
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
b: Ta có: ΔABE=ΔADE
nên EB=ED
hay ΔEBD cân tại E
cho tam giác ABC có AB=15cm,AC=12 trên hai cạnh AB và AC lấy 2 điểm D và E sao cho AD=8cm;AE=6cm
a,chứng minh tam giác AED tương đương tam giác ABC
b,tính chu vi tam giác ADE biết BC=25cm
c, Tính góc ADE biết góc C=20độ
Cho tam giác nhọn ABC(AB<Ac) có góc A = 60 độ. D là trung điểm của AC. Trên tia AB lấy E sao cho AE=AD
CMR: a) tam giác ADE đều
b) tam giác DEC cân
c) CE vuông góc với AB
cho tam giác ABC có góc A=90 độ và AB<AC. Trên cạnh AC lấy điểm D sao cho AD=AB.Trên tia đối của tia AB lâys diểm E sao cho AE=Ac
a chứng minh tam giác ABC = tam giác ADE và DE=Bc
b chứng minh DEvuông góc với BC
c Biết 4gócB=5gócC.Tính góc AED
Cho tam giác ABC có AB < AC. Ve phân giác AD của tam giác ABC ( D thuộc BC ). trên AC lấy điểm E sao cho AE=AB
a) CM: tam giác ADB=tam giác ADE
b) CM: AD là trung trực của BC
c) Gọi F là giao điểm của AB và DE. CMR: góc DBF = góc DEC và tam giác BFD = tam giác FCD
a, Xét tam giác ADB và tam giác ADE có:
AD chung
góc BAD = góc EAD
AB = AE
=> Tam giác ADB = tam giác ADE
b, Câu này mình sửa lại đề là AD là trung trực của BE mới đúng nhé!
Từ câu a => BD = BE => D thuộc trung trực của BE (1)
Ta có AB = AE => A thuộc trung trực của BE (2)
Từ 1 và 2 suy ra AD là trung trực của BE
c, Từ câu a nên ta có góc ABD = góc AED => góc FBD = góc CED (cùng bù với 2 góc = nhau)
Xét tam giác FBD và tam giác CED có:
góc FBD = góc CED
BD = ED
góc BDF = góc EDC (đối đỉnh)
=> tam giác FBD = tam giác CED (g.c.g)
=> góc DBF = góc DEC (góc tương ứng)
mình sửa lại đề là góc BFD = góc ECD nhé!
=> góc BFD = góc ECD (góc tương ứng)
a, Xét tam giác ADB và tam giác ADE có:
AD chung
góc BAD = góc EAD
AB = AE
=> Tam giác ADB = tam giác ADE
b, Câu này mình sửa lại đề là AD là trung trực của BE mới đúng nhé!
Từ câu a => BD = BE => D thuộc trung trực của BE (1)
Ta có AB = AE => A thuộc trung trực của BE (2)
Từ 1 và 2 suy ra AD là trung trực của BE
c, Từ câu a nên ta có góc ABD = góc AED => góc FBD = góc CED (cùng bù với 2 góc = nhau)
Xét tam giác FBD và tam giác CED có:
góc FBD = góc CED
BD = ED
góc BDF = góc EDC (đối đỉnh)
=> tam giác FBD = tam giác CED (g.c.g)
=> góc DBF = góc DEC (góc tương ứng)
mình sửa lại đề là góc BFD = góc ECD nhé!
=> góc BFD = góc ECD (góc tương ứng)