Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Duy Anh
Xem chi tiết
Trần Duy Anh
22 tháng 12 2020 lúc 21:06

Xin bổ sung thêm là Q là TĐ của SB nha

Nguyễn Việt Lâm
22 tháng 12 2020 lúc 21:31

Bạn coi lại đề bài.

N,M,P,Q là các điểm trên CD, AD, SA hay trung điểm?

Vì nếu trung điểm thì làm sao thỏa mãn MD=2MC hay NA=3ND được?

Lê Thị Thu Hà
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 10 2020 lúc 22:53

Gọi N là trung điểm AD

Trong mặt phẳng (ABCD), qua M kẻ đường thẳng song song BC cắt CN tại P \(\Rightarrow MP//BC//AD\) (1)

Áp dụng Talet: \(\frac{CP}{CN}=\frac{CM}{CD}=\frac{2}{3}\)

Trong tam giác SNC, ta có: \(\frac{SG}{NS}=\frac{CP}{NC}=\frac{2}{3}\Rightarrow GP//SC\) (Talet đảo) (2)

Từ (1); (2) \(\Rightarrow\left(MNG\right)//\left(SAC\right)\)

\(\Rightarrow MG//\left(SAC\right)\)

Hân Lê
Xem chi tiết
Nguyễn Bảo Ngọc
25 tháng 10 2023 lúc 22:01
 

a) Dễ thấy S là một điểm chung của hai mặt phẳng (SAD) và (SBC).

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (SAD) ∩ (SBC) = Sx

Và Sx // AD // BC.

b) Ta có: MN // IA // CD

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mà Giải sách bài tập Toán 11 | Giải sbt Toán 11 

(G là trọng tâm của ∆SAB) nên 

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ⇒ GN // SC

SC ⊂ (SCD) ⇒ GN // (SCD)

c) Giả sử IM cắt CD tại K ⇒ SK ⊂ (SCD)

MN // CD ⇒

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

nguyễn bảo ngọc
Xem chi tiết
Lê Hải Yến
Xem chi tiết
Kiên
Xem chi tiết
camcon
Xem chi tiết

Gọi F là trung điểm SD \(\Rightarrow\dfrac{GF}{GA}=\dfrac{1}{2}\) theo t/c trọng tâm

Trong mp (SAD), qua G kẻ đường thẳng song song SD cắt AD tại E

\(\Rightarrow GE||SD\Rightarrow GE||\left(SCD\right)\)

\(\left\{{}\begin{matrix}GM||\left(SCD\right)\\GE||\left(SCD\right)\end{matrix}\right.\) \(\Rightarrow\left(GME\right)||\left(SCD\right)\Rightarrow ME||\left(SCD\right)\Rightarrow ME||CD\)

\(\Rightarrow CDEM\) là hình bình hành (2 cặp cạnh đối song song)

\(\Rightarrow MC=ED\Rightarrow MB=EA\)

Áp dụng định lý Talet trong tam giác ADF: \(\dfrac{ED}{EA}=\dfrac{GF}{GA}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{MC}{MB}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{S_{MAB}}{S_{MAC}}=\dfrac{MB}{MC}=2\)

loading...

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 12 2017 lúc 14:48

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 12 2018 lúc 5:03

Đáp án A

Qua G kẻ đường thẳng d song song với AB và cắt SA, SB lần lượt tại hai điểm Q, P. Vì MN là đường trung bình của ABCD ⇒ MN//AB

Do đó MN//PQ. Vậy giao tuyến của mặt phẳng (MNG) và (SAB) là PQ.

Mặt phẳng (MNG) cắt khối chóp S.ABCD theo thiết diện là tứ giác MNPQ

Vì MN//PQ suy ra MNPQ là hình thang

Để MNPQ là hình bình hành  ⇔ MN=PQ (1)

Gọi I là trung điểm của AB, G là trọng tâm tam giác  S A B ⇒ S G S I = 2 3

Tam giác SAB có  P Q / / A B ⇒ P Q A B = S G S I = 2 3 ⇔ P Q = 2 3 A B (2)

MN là đường trung bình  hình thang  A B C D ⇒ M N = A B + C D 2 (3)

Từ (1) , (2) và (3) suy ra 2 3 A B = A B + C D 2 ⇔ 4 A B = 3 A B + 3 C D ⇔ A B = 3 C D .