giải hệ: 8
x^2.y + 2y + x = 4xy
\(\frac{1}{x^2}+\frac{1}{xy}+\frac{x}{y}=3\)
Giải hệ phương trình:
\(\hept{\begin{cases}x^2y+2y+x=4xy\\\frac{1}{x^2}+\frac{1}{xy}+\frac{x}{y}=3\end{cases}}\)
Giải hệ phương trình:
x2y+2y+x=4xy (1)
\(\frac{1}{x^2}+\frac{1}{xy}+\frac{x}{y}=3\)
Giair hệ phương trình \(\left\{{}\begin{matrix}x^2y+2y+x=4xy\\\frac{1}{x^2}+\frac{1}{xy}+\frac{x}{y}=3\end{matrix}\right.\)
ĐKXĐ: \(x;y\ne0\)
\(x^2y+2y+x=4xy\Leftrightarrow x+\frac{2}{x}+\frac{1}{y}=4\)
Đặt \(\left\{{}\begin{matrix}\frac{1}{x}=a\\\frac{1}{y}=b\end{matrix}\right.\) \(\Rightarrow\frac{x}{y}=\frac{b}{a}\) ( hệ trở thành:
\(\left\{{}\begin{matrix}\frac{1}{a}+2a+b=4\\a^2+ab+\frac{b}{a}=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+\frac{1}{a}+a+b=4\\a^2+1+b\left(a+\frac{1}{a}\right)=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+\frac{1}{a}+a+b=4\\a\left(a+\frac{1}{a}\right)+b\left(a+\frac{1}{a}\right)=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+\frac{1}{a}+a+b=4\\\left(a+\frac{1}{a}\right)\left(a+b\right)=4\end{matrix}\right.\)
\(\Rightarrow\) Theo Viet đảo, \(a+\frac{1}{a}\) và \(a+b\) là nghiệm của:
\(t^2-4t+4=0\Rightarrow t=2\Rightarrow\left\{{}\begin{matrix}a+\frac{1}{a}=2\\a+b=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Giải hệ phương trình:
\(\hept{\begin{cases}\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\\2x^2y+xy^2-4xy=2x-y\end{cases}}\)
Ta có:
\(\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\)
\(\Leftrightarrow x^2y^2-2xy-1=0\)
Giải ra tìm được xy thế vô pt sau giải tiếp
CMR
a) \(\frac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)=\(\frac{1}{x-y}\)
b) \(\frac{x^2y-2xy^2+y^3}{2x^2-xy-y^2}\)=\(\frac{y-\left(x-y\right)}{2x+y}\)
c) \(\frac{4x^2-4xy+y^2}{y^3-6y^2x+12yx^2-8x}=\frac{-1}{2x-y}\)
giải hệ \(\hept{\begin{cases}xy^2+2x+y=4xy\\\frac{1}{xy}+\frac{1}{y^2}+\frac{y}{x}=3\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}xy^2+2x+y=4xy\\\frac{1}{xy}+\frac{1}{y^2}+\frac{y}{x}=3\end{cases}}\)
gpt\(_{\hept{\begin{cases}x^2y+2y+x=4xy\\\frac{1}{x^2}+\frac{1}{xy}+\frac{x}{y}=3\end{cases}}}\)
\(_{\hept{\begin{cases}x^2y+2y+x=4xy\\\frac{1}{x^2}+\frac{1}{xy}+\frac{x}{y}=3\left(2\right)\end{cases}}}\left(1\right)\)
Đk: x; y khác 0
(1) <=> \(x+\frac{2}{x}+\frac{1}{y}=4\Leftrightarrow\left(x+\frac{1}{x}\right)+\left(\frac{1}{x}+\frac{1}{y}\right)=4\) (3)
(2) <=> \(\left(\frac{1}{x^2}+1\right)+\left(\frac{1}{xy}+\frac{x}{y}\right)=4\)
\(\Leftrightarrow\frac{\left(1+x^2\right)}{x^2}+\frac{\left(1+x^2\right)}{xy}=4\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)\left(\frac{1}{x}+\frac{1}{y}\right)=4\) (4)
Từ (3) ; (4) ta có:
\(\hept{\begin{cases}x+\frac{1}{x}=2\\\frac{1}{x}+\frac{1}{y}=2\end{cases}}\Leftrightarrow x=y=1\)
Giải hệ phương trình: \(\hept{\begin{cases}y^6+y^3+2x^2=\sqrt{xy-x^2y^2}\\4xy^3+y^3+\frac{1}{2}\ge2x^2+\sqrt{1+\left(2x-y\right)^2}\end{cases}}\)
\(\hept{\begin{cases}y^6+y^3+2x^2=\sqrt{xy-x^2y^2}\left(1\right)\\4xy^3+y^2+\frac{1}{2}\ge2x^2+\sqrt{1+\left(2x-y\right)^2}\left(2\right)\end{cases}}\)
\(VP\left(1\right)=\sqrt{\frac{1}{4}-\left(xy-\frac{1}{2}\right)^2}\le\frac{1}{2}\Rightarrow VT\left(1\right)=y^6+y^3+2x^2\le\frac{1}{2}\)
\(\Leftrightarrow2x^2+2y^3+4x^2\le1\left(3\right)\)
Từ (2)(3) => \(8xy^3+2y^3+2\ge2y^6+4x^2+4x^2+2\sqrt{1+\left(2x-y\right)^2}\)
\(\Leftrightarrow8xy^3+2\ge2y^6+8x^2+2\sqrt{2+\left(2x-y\right)^2}\)
\(\Leftrightarrow4xy^3+1\ge y^6+4x^2+\sqrt{1+\left(2x-y\right)^2}\)
\(\Leftrightarrow1-\sqrt{1+\left(2x-y\right)^2}\ge y^6-4xy^3+4x^2=\left(y^3-2x\right)^2\left(4\right)\)
\(VT\left(4\right)\le0;VP\left(4\right)\ge0\). Do đó:
(4) \(\Leftrightarrow\hept{\begin{cases}y=2x\\y^3=2x\end{cases}\Leftrightarrow\hept{\begin{cases}y=2x\\y^3=y\end{cases}}}\)<=> \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{-1}{2}\\y=-1\end{cases}}\)
Thử lại chỉ có \(\left(x;y\right)=\left(\frac{-1}{2};-1\right)\)thỏa mãn
Vậy hệ đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-1}{2};-1\right)\)