Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2021 lúc 20:11

b: \(\widehat{NMH}+\widehat{N}=90^0\)

\(\widehat{P}+\widehat{N}=90^0\)

Do đó: \(\widehat{NMH}=\widehat{P}\)

Nguyễn Phương Diệp Thy
Xem chi tiết
Thảo Phạm
Xem chi tiết
Lê Thị Bích Tuyền
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
channel công chúa
18 tháng 7 2019 lúc 8:54

Vì các cạnh của tam giác lần lượt là 4cm, 6cm và 6cm nên tam giác đó là tam giác cân. Góc nhỏ nhất của tam giác là góc đối diện với cạnh 4cm.

Kẻ đường cao từ đỉnh của góc nhỏ nhất. Đường cao chia cạnh đáy thành hai phần bằng nhau mỗi phần 2cm.

Ta có: cosβ=26=13⇒β≈70∘32′cos⁡β=26=13⇒β≈70∘32′

Suy ra: α=180∘–(β+β)=180∘–2.70∘32'=38∘56′α=180∘–(β+β)=180∘–2.70∘32′=38∘56′

Vậy góc nhỏ nhất của tam giác bằng 38∘56′38∘56′.

nguyễn hương mây
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 10 2021 lúc 22:36

2: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot BC=AB^2\left(1\right)\)

Xét ΔBDC vuông tại B có BA là đường cao ứng với cạnh huyền DC

nên \(AD\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 2 2018 lúc 11:33

Nguyễn Thị Hoàng Ánh
Xem chi tiết
KODOSHINICHI
20 tháng 9 2017 lúc 21:34

câu 2

Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125 

Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*) 
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**) 
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0 
=> AB^2 = 5605. Vì AB > 0 => AB = 75 
AC = 4/3 x AC => AC = 100 

Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC. 
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có: 
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45 
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80

KODOSHINICHI
20 tháng 9 2017 lúc 21:33

(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5

๖ۣۜNɦσƙ ๖ۣۜTì
12 tháng 6 2019 lúc 18:17

1) Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5

Bảo Chi
Xem chi tiết
Bảo Chi
20 tháng 2 2020 lúc 21:17

GIÚP MÌNH VỚI CÁC BẠN ƠI!!!

ARIGATO!!!

Khách vãng lai đã xóa