chứng minh tích của năm số tự nhiên liên tiếp thì chia hết cho 120
Chứng tỏ rằnga) Tổng của 2 số lẻ liên tiếp thì chia hết cho 4.b) Tích của 2 số tự nhiên liên tiếp thì chia hết cho 2.c) Tích của 3 số tự nhiên liên tiếp thì chia hết cho 6.d) Tích của 4 số tự nhiên liên tiếp thì chia hết cho 24.e) Tích của 5 số tự nhiên liên tiếp thì chia hết cho 120.
ousbdl
jvdajnvjl
nsdg
ouhqer
kgkrebvjdsjb
vq
wjkgb
Fbovafbeuonasf
Chứng minh rằng tích của 5 số tự nhiên liên tiếp thì chia hết cho 120.
Cach lam ne
b1 : Goi
b2 : Suy luan
b3 : Ket luan
Gọi 5 số tự nhiên liên tiếp là a, a+1 , a+2 ,a+3, a+4
ta có a+(a+1)+(a+2)+(a+3)+(a+4)
=5a +(1+2+3+4)
=5a+10
vif120chia hết cho 5,10
=> tông của 5 số tự nhiên liên tiếp là một số chia hết cho 120
hok toots~ nếu có gì sai góp ý giùm mik
CNR:
a) tích của 2 số tự nhiên liên tiếp thì chia hết hay không chia hết cho 2
b) tích của n số tự nhiên liên tiếp thì chia hết cho n
c) tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
d) tích của 5 số tự nhiên liên tiếp thì chia hết cho 120
a)Gọi 2 số tự nhiên liên tiếp đó lần lượt là a;a+1
Ta có:
a(a+1) chia hết 2 ( vì a ; a+1 là số liên tiếp nên có 1 số là số chẵn và 1 số là số lẻ)
b)Vì n chia hết n nên tích n số tự nhiên liên tiếp chia hết b
c,d ....
1)Chứng minh rằng nếu các số tự nhiên m và n thõa mãn hệ thức 3m-2m=1 thì m và n nguyên tố cùng nhau.
2)Chứng minh:
a) Tích của 3 số tự nhiên liên tiếp chia hết cho 6
b) Tích của 5 số tự nhiên liên tiếp chia hết cho 120
Chứng minh rằng tích 5 số tự nhiên liên tiếp thì chia hết cho 120
gọi 5 số liên tiếp đó là : a, a + 1, a + 2, a + 3,a + 4
=> tích của chúng là : a . (a + 1) . (a + 2) . (a + 3) . (a + 4)
trong tích của 5 số liên tiếp có ít nhất là 2 số chẵn liên tiếp nhau. Tích 2 số chẵn liên tiếp nhau chia hết cho 8 => a . (a + 1) . (a + 2) . (a + 3) . (a + 4) \(⋮\)8 (1)
trong tích của 5 số liên tiếp sẽ có 1 số chia hết cho 5 => a . (a + 1) . (a + 2) . (a + 3) . (a + 4) \(⋮\)5 (2)
trong tích của 5 số liên tiếp có tích của 3 số tự nhiên liên tiếp. Tích của 3 số tự nhiên liên tiếp chia hết cho 3 => a . (a + 1) . (a + 2) . (a + 3) . (a + 4) \(⋮\)3 (3)
Từ (1), (2) và (3) => a . (a + 1) . (a + 2) . (a + 3) . (a + 4) \(⋮\)120 vì 5 . 8 . 3 = 120 mà a . (a + 1) . (a + 2) . (a + 3) . (a + 4) \(⋮\)5;8;3
gọi 5 số liên tiếp đó là :
a, a + 1, a + 2, a + 3,a + 4
=> tích của chúng là :
a . (a + 1) . (a + 2) . (a + 3) . (a + 4)
trong tích của 5 số liên tiếp có ít nhất là 2 số chẵn liên tiếp nhau.
Tích 2 số chẵn liên tiếp nhau chia hết cho 8
=> a . (a + 1) . (a + 2) . (a + 3) . (a + 4) ⋮ 8 (1)
trong tích của 5 số liên tiếp sẽ có 1 số chia hết cho 5
=> a . (a + 1) . (a + 2) . (a + 3) . (a + 4) ⋮ 5 (2)
trong tích của 5 số liên tiếp có tích của 3 số tự nhiên liên tiếp
. Tích của 3 số tự nhiên liên tiếp chia hết cho 3
=> a . (a + 1) . (a + 2) . (a + 3) . (a + 4) ⋮ 3 (3)
Từ (1), (2) và (3)
=> a . (a + 1) . (a + 2) . (a + 3) . (a + 4) ⋮ 120 vì 5 . 8 . 3 = 120 mà a . (a + 1) . (a + 2) . (a + 3) . (a + 4) ⋮ 5;8;3
Chứng minh rằng: a) Tích của 2 số tự nhiên liên tiếp chia hết cho 2.
b) Tích của 3 số tự nhiên liên tiếp chia hết cho 6.
c) Tích của 4 số tự nhiên liên tiếp chia hết cho 24.
d) Tích của 5 số tự nhiên liên tiếp chia hết cho 120.
Giải cả 4 phần giúp mình nhé. Xin cảm ơn chân thành các bạn giúp mình giải cả 4 phần!!!
b) Giar sử gọi 3 số tự nhiên liên tiếp là: a, a+1,a+2.
Theo đề bài ta có :
A = a(a + 1) (a + 2) + 6
Ta có 6 = 3x2 mà ( 3,2) = 1
A + 2 vì trong A số tự nhiên liên tiếp có một số chia hết cho 2
A + 3 vì trong A số tự nhiên liên tiếp có một số chia hết cho 3
Vậy tích của 3 STN liên tiếp chia hết cho 6.
chứng minh rằng tích 3 số tự nhiên và 3 số nguyên liên tiếp chia hết cho 6
tương tự với tích 5 số tự nhiên và 5 số nguyên liên liên tiếp chia hết cho 120
Gọi a, a+1, a+2 lần lượi là 3 số nguyên liên tiếp ( a thuộc Z)
Tích a(a+1)(a+2) chia hết cho 3 khi một trong ba số trên chia hết cho 3.
Một số chia cho 3 thì có 3 trường hợp:
- a chia hết cho 3
- giả sử a chia 3 dư 1 thì (a+1) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3.
- giả sử a chia 3 dư 2 thì (a+2) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3.
=> Tích a(a+1)(a+2) luôn chia hết cho 3. (1)
Mà 3 trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 2 (2)
Vì ƯCLN(3;2) 1 nên từ (1) và (2) suy ra 3 số nguyên liên tiếp chia hết cho (2 . 3) = 6
Chứng minh rằng tích của 5 số tự nhiên liên tiếp chia hết cho 120
Gọ 5 so tu nhien lien tiep co dang la :
a,a.1,a.2,a.3,a.4
Theo de bai ta co :
a.(a.1)+(a.2)+(a.3)+(a.4)
=a.5.(1.2.3.4)
=a.5.24
=a.120 chia het cho 120
Suy ra tich cua 5 so tu nhien lien tiep chia het cho 120
****
Chứng minh rằng tích của 5 số tự nhiên liên tiếp chia hết cho 120
_ Gọi 5 số tự nhiên liên tiếp đó là : a , a + 1 , a + 2 , a + 3 , a + 4 .
Theo bài ra , ta có :
a x ( a + 1 ) x ( a + 2 ) x ( a + 3 ) x ( a + 4 )
= a x 5 x ( 1 x 2 x 3 x 4 )
= a x 5 x 24
Mà 5 x 24 = 120 .
=> a chia hết cho 120 .
_ Vậy tích của 5 số tự nhiên liên tiếp chia hết cho 120 .
Vô đường link này nè bạn
http://olm.vn/hoi-dap/question/144072.html
Hoăc cái này cho dễ hỉu bè bạn
http://olm.vn/hoi-dap/question/30578.html