Chứng minh :
\(\sqrt{7+\sqrt{13}}+\sqrt{7-\sqrt{13}}=\sqrt{26}\)
chứng minh
a) \(\sqrt{14+2\sqrt{13}}-\sqrt{14-2\sqrt{13}}=2\)
b) \(\sqrt{7+4\sqrt{3}}-\sqrt{5-2\sqrt{6}}-\sqrt{2}=2\)
a. \(VT=\sqrt{14+2\sqrt{13}}-\sqrt{14-2\sqrt{13}}\)
=\(\sqrt{\left(\sqrt{13}+1\right)^2}-\sqrt{\left(\sqrt{13}-1\right)^2}=\sqrt{13}+1-\left(\sqrt{13}-1\right)\)
\(=\sqrt{13}+1-\sqrt{13}+1=2=VP\left(đpcm\right)\)
b. \(VT=\sqrt{7+4\sqrt{3}}-\sqrt{5-2\sqrt{6}}-\sqrt{2}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}-\sqrt{2}\)
\(=2+\sqrt{3}-\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{2}=2+\sqrt{3}-\sqrt{3}+\sqrt{2}-\sqrt{2}\)
\(=2=VP\left(đpcm\right)\)
Tính \(\left(\sqrt{7}+\sqrt{11}+\sqrt{13}\right)\left(\sqrt{11}+\sqrt{13}-\sqrt{7}\right)\left(\sqrt{7}+\sqrt{13}-\sqrt{11}\right)\left(\sqrt{7}+\sqrt{11}-\sqrt{13}\right)\)
tính giá trị của biểu thứ \(A=\dfrac{\sqrt{26}-\sqrt{18}+\sqrt{32}}{\sqrt{7}-\sqrt{13}+\sqrt{2}}\)
Tính GT biểu thức\(A=\sqrt{13+\sqrt{7+\sqrt{13+\sqrt{7+\sqrt{13+\sqrt{7+.....}}}}}}\)
=> \(A^2=13+\sqrt{7+\sqrt{13+\sqrt{7+\sqrt{13+\sqrt{7+....}}}}}\)
=>\(\left(A^2-13\right)^2=7+\sqrt{13+\sqrt{7+\sqrt{13+\sqrt{7...}}}}\)
=>\(\left(A^2-13\right)^2=7+A\)
Đến đây tách ra giải PT bậc 4 nha!
Bạn giải giúp mình với bấm không ra nghiệm nơi
Gỉai giúp mk vs
\(\sqrt{21-6\sqrt{6}}\)
\(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}\)
\(\left(3-\sqrt{2}\right)\sqrt{7+4\sqrt{3}}\)
\(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}\)
\(\sqrt{6}\left(\sqrt{26+15\sqrt{3}}+\sqrt{26-15\sqrt{3}}\right)\)
\(1.\sqrt{21-6\sqrt{6}}=\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=\text{ |}3\sqrt{2}-\sqrt{3\text{ }}\text{ |}=3\sqrt{2}-\sqrt{3}\)\(2.\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\sqrt{9-2.3\sqrt{5}+5}+\sqrt{9+2.3\sqrt{5}+5}=\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(3+\sqrt{5}\right)^2}=\text{ |}3-\sqrt{5}\text{ |}+\text{ |}3+\sqrt{5}\text{ |}=6\)\(3.\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\sqrt{8+2.2\sqrt{2}.\sqrt{5}+5}+\sqrt{8-2.2.\sqrt{2}.\sqrt{5}+5}=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}=\text{ |}2\sqrt{2}+\sqrt{5}\text{ |}+\text{ |}2\sqrt{2}-\sqrt{5}\text{ |}=4\sqrt{2}\)\(4.\) Tương tự nhé bạn.
13. Với a,b,c không âm. Chứng minh: \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
14. Tình GTNN của biểu thức \(A=\sqrt{7+4x-4x^2}\)
14:
\(A=\sqrt{-4x^2+4x+7}\)
\(=\sqrt{-\left(4x^2-4x-7\right)}\)
\(=\sqrt{-\left(4x^2-4x+1-8\right)}\)
\(=\sqrt{-\left(2x-1\right)^2+8}< =\sqrt{8}=2\sqrt{2}\)
Dấu = xảy ra khi 2x-1=0
=>\(x=\dfrac{1}{2}\)
13:
\(a+b+c>=\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
=>\(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ac}>=0\)
=>\(\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(a-2\sqrt{ac}+c\right)>=0\)
=>\(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2>=0\)(luôn đúng)
\(\sqrt{7+\sqrt{13}}\) + \(\sqrt{7-\sqrt{13}}\)
Đặt \(A=\sqrt{7+\sqrt{13}}+\sqrt{7-\sqrt{13}}\Rightarrow A^2=7+\sqrt{13}+7-\sqrt{13}+2\sqrt{\left(7+\sqrt{13}\right)\left(7-\sqrt{13}\right)}=14+2\sqrt{49-13}=14+2\sqrt{36}=14+12=26\Rightarrow A=\pm\sqrt{26}\)Mà \(\left\{{}\begin{matrix}\sqrt{7+\sqrt{13}}>0\\\sqrt{7-\sqrt{13}}>0\end{matrix}\right.\)⇒\(\sqrt{7+\sqrt{13}}+\sqrt{7-\sqrt{13}}>0\Rightarrow A>0\)
Vậy \(A=\sqrt{26}\Rightarrow\sqrt{7+\sqrt{13}}+\sqrt{7-\sqrt{13}}=\sqrt{26}\)
Cách khác :
\(\sqrt{7+\sqrt{13}}+\sqrt{7-\sqrt{13}}=\dfrac{\sqrt{14+2\sqrt{13}}+\sqrt{14-2\sqrt{13}}}{\sqrt{2}}=\dfrac{\sqrt{13+2\sqrt{13}+1}+\sqrt{13-2\sqrt{13}+1}}{\sqrt{2}}=\dfrac{\sqrt{13}+1+\sqrt{13}-1}{\sqrt{2}}=\sqrt{13}\)
1.\(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
2.\(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}\)
3. (\(\sqrt{3}+\sqrt{5}\) ) \(\sqrt{7-2\sqrt{10}}\)
\(1.\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}=\sqrt{5-2.\sqrt{2}.\sqrt{5}+2}-\sqrt{5+2.\sqrt{5}.\sqrt{2}+2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}=\text{|}\sqrt{5}-\sqrt{2}\text{|}-\text{|}\sqrt{5}+\sqrt{2}\text{|}=-2\sqrt{2}\)\(2.\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\sqrt{8+2.2\sqrt{2}.\sqrt{5}+5}+\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5}=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}=\text{|}2\sqrt{2}+\sqrt{5}\text{|}+\text{|}2\sqrt{2}-\sqrt{5}\text{|}=4\sqrt{2}\)\(3.\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\left(\sqrt{3}+\sqrt{5}\right)\text{|}\sqrt{5}-\sqrt{2}\text{|}=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)\)
Bài 1:Cho a,b,c >= 0. Chứng minh:
a) \(a+b>=2\sqrt{ab}\) ( bất đẳng thức CÔ SI )
b) \(a+b+c>=\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
Bài 2: Tính
a) \(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
b) A = \(\sqrt{7+\sqrt{13}}-\sqrt{7-\sqrt{13}}\)