Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhật Hạ
Xem chi tiết
when the imposter is sus
11 tháng 8 2023 lúc 7:15

a) Lập bảng

n 1 2 3 4 5 6 7 8 ...
7n 7 9 3 1 7 9 3 1 ...
9n 9 1 9 1 9 1 9 1 ...

Ta có: 2018 : 4 = 504 (dư 2)

Suy ra \(2017^{2018}+2019^{2018}= \overline{...9}+\overline{...1}=\overline{...0}\)

Vậy 20172018 + 20192018 chia hết cho 10

b) Làm tương tự như câu a)

lê văn an
Xem chi tiết
tam mai
16 tháng 7 2019 lúc 10:18

= 5^2017( 1+5-5^2)

=5^2017. (-19) chia hết cho 19

headsot96
16 tháng 7 2019 lúc 10:20

\(5^{2017}+5^{2018}-5^{2019}=5^{2017}\left(1+5-5^2\right)=5^{2017}\left(-19\right)⋮19\)

Đào Trần Tuấn Anh
16 tháng 7 2019 lúc 10:23

52017 + 52018 + 52019

= 52017 . ( 1 + 5 - 52 )

= 52017 . ( -19) \(⋮\)19

=> 52017 + 52018 - 52019 \(⋮\)19

nguyễn thị yến nhi
Xem chi tiết
Nguyễn Quốc Việt
17 tháng 12 2016 lúc 20:55

n có 3 dạng tổng quát là: 3k ; 3k + 1 ; 3k + 2 (k ∈ N)

Trường hợp 1: n = 3k

Thay n = 3k vào n + 2019, ta có:

n + 2019 = 3k + 2019 = 3(k + 673)⋮3

=> (n + 2019)⋮3

=> (n + 2017)(n + 2018)(n + 2019)⋮3 (1)

Trường hợp 2: n = 3k + 1

Thay n = 3k + 1 vào n + 2018, ta có:

n + 2018 = 3k + 1 + 2018 = 3k + 2019 = 3(k + 673)⋮3

=> (n + 2018)⋮3

=> (n + 2017)(n + 2018)(n + 2019)⋮3 (2)

Trường hợp 3: n = 3k + 2

Thay n = 3k + 2 vào n + 2017, ta có:

n + 2017 = 3k + 2 + 2017 = 3k + 2019 = 3(k + 673)⋮3

=> (n + 2017)⋮3

=> (n + 2017)(n + 2018)(n + 2019)⋮3 (3)

Từ (1) ; (2) và (3) =>(n + 2017)(n + 2018)(n + 2019)⋮3 với mọi n ∈ N

Vậy (n + 2017)(n + 2018)(n + 2019)⋮3 (đpcm)

fdgfdgdrg
11 tháng 4 2017 lúc 22:35

ngu cau nay de vai loz

Nguyễn Hoàng trung
Xem chi tiết
Evil
31 tháng 8 2018 lúc 20:31

tìm chữ số tận cung của tổng trên ra

Nguyễn đông an
Xem chi tiết
Song Lam Diệp
Xem chi tiết
Akai Haruma
20 tháng 1 2018 lúc 17:13

Lời giải:

Ta có:

\(A=2017^{2017}+2019^{2018}=(2017^{2017}+1)+(2019^{2018}-1)\)

Áp dụng các hằng đẳng thức đáng nhớ:

\(2017^{2017}+1=2017^{2017}+1^{2017}=(2017+1)(2017^{2016}-2017^{2015}+....+1)=2018X\)

\(2019^{2018}-1=2019^{2018}-1^{2018}=(2019-1)(2019^{2017}+2019^{2016}+...+1)=2018Y\)

Do đó:

\(A=2018X+2018Y=2018(X+Y)\vdots 2018\)

Ta có đpcm.

Phạm Hùng Cường
Xem chi tiết
Nguyễn Nam
Xem chi tiết
Nguyễn Nam
Xem chi tiết