Cho a và b là những số nguyên dương thỏa mãn ab + 1 chia hết cho a2 + b2 .
Hãy chứng minh rằng: a2 + b2 / ab + 1 là bình phương của một số nguyên.
Cho a và b là những số nguyên dương thỏa mãn ab + 1 chia hết cho a2 + b2 . Hãy chứng minh rằng: a2 + b2 / ab + 1 là bình phương của một số nguyên.
Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12
cho a,b là các số nguyên dương thỏa mãn a2-ab+\(\dfrac{3}{2}\)b2 chia hết cho 25. Chứng minh rằng cả a và b đều chia hết cho 5.
Cho a,b là các số nguyên thỏa mãn (a2+b2) chia hết cho 3 . Chứng minh rằng a và b cùng chia hết cho 3
Số chính phương khi chia 3 chỉ dư 0 hoặc 1.
Trường hợp 1:
\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)
Trường hợp 2:
\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)
Trường hợp 3:
\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )
Vậy có đpcm.
Giải:
Giả sử a không ⋮ 3 ➩ b không ⋮ 3
➩\(a^2 - 1 + b^2-1\) ⋮ 3
Mà \(a^2 +b^2\)➩2⋮ 3 (không có thể)
Vậy ➩a và b ⋮ 3.
Cho a, b là hai số nguyên dương thỏa mãn \(\dfrac{a+b^3}{a^2+3ab+3b^2-1}\) là một số nguyên. Chứng minh rằng a2 + 3ab + 3b2 - 1 chia hết cho lập phương của một số nguyên lớn hơn 1
Các cao nhân giúp mình với
Bài 1: Cho n > 3 và n ∈ N. Chứng minh nếu 2n = 10a + b với a; b ∈ N và 0 < b < 9 thì ab ⋮ 6
Bài 2: Cho các số nguyên dương thỏa mãn a2 + b2 = c2. Chứng minh rằng abc ⋮ 60
Bài 3: Chứng minh rằng nếu a + 1 và 2a + 1 đều là các số chính phương thì a ⋮ 24
Bài 4: Chứng minh rằng nếu a + 1 và 3a + 1 đều là các số chính phương thì a ⋮ 40
Bài 5: Cho 3 số nguyên dương thỏa mãn a3 + b3 + c3 ⋮ 14. Chứng minh rằng abc cũng ⋮ 14
Bài 6: Cho biểu thức S = n4 + 2n3 – 16n2 – 2n + 15. Tìm tất cả các giá trị nguyên của n để S ⋮ 16
cho a,b là các số nguyên dương thỏa mãn a2-ab+3/2b2 chia hết cho 25. Chứng minh rằng cả a và b đều chia hết cho 5.
Cho a và b là những số nguyên dương thỏa mãn ab + 1 chia hết cho a2 + b2 .
Hãy chứng minh rằng: a2 + b2 / ab + 1 là bình phương của một số nguyên.
Hóng cao nhân
Cho a và b là những số nguyên dương thỏa mãn ab + 1 chia hết cho a2 + b2 .
Hãy chứng minh rằng: a2 + b2 / ab + 1 là bình phương của một số nguyên.
Bài này đề thi IMO của hs lớp 12 sao lại hỏi ở đây
a) cho ba số nguyên a,b,c thỏa mãn :a+b=c+d và ab +1=cd . Chứng tỏ c=d
b)cho dãy số nguyên dương : a1,a2,a3,...a7.Gọi b1,b2,...b7 là cách sắp xếp theo thứ tự khác của các số trên . Tính tổng
c)(a1+b1),(a2+b2),....(a7+b7) và cho biết tích P=(a1+b1).(a2+b2).....(a7+b7) là chẵn hay lẻ?
CÁC BẠN GIẢI NHANH GIÙM MÌNH NHA!
Xét tổng Nếu cả 7 số đều lẻ thì tổng của chúng là số lẻ và do đó khác 0 Suy ra có ít nhất một trong 7 số là số chẵn |
là số chẵn