Tìm n thuộc tập N sao cho cacs số sau là các số nguyên tố
\(n^2+12.n\)
\(3n+6\)
B1) Chứng tỏ 2 số 2n + 3 và 3n + 5 là 2 số nguyên tố cùng nhau với mọi n thuộc tập hợp N*
B2) Cho 5n + 6 và 8n+ 7. Tìm ƯCLN của chúng với mọi n thuộc tập N.
Gọi d là UCLN(2n+3,3n+5)
\(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
=>d = 1
=>UCLN(2n+3,3n+5) = 1
=>2n+3 và 3n+5 là hai số nguyên tố cùng nhau
Gọi d là UCLN(5n+6,8n+7)
\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\8n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}8\left(5n+6\right)⋮d\\5\left(8n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}40n+48⋮d\\40n+35⋮d\end{cases}}}\)
\(\Rightarrow\left(40n+48\right)-\left(40n+35\right)⋮d\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1;13\right\}\)
Để \(\left(5n+6,8n+7\right)=1\)thì \(d\ne13\)
=> UCLN(5n+6,8n+7) = 1
B1) Gọi d là UCLN của (2n+3) và (3n+5)
Ta có: (2n+3):d và (3n+5):d => 3(2n+3):d và 2(3n+5):d
=> 2(3n+5)-3(2n+3):d <=> (6n+10-6n-9):d <=> 1:d. Do đó UCLN của 2 số đó là 1
Vậy chúng là 2 số nguyên tố cùng nhau.
B2) Cách giải tương tự.
a) Tìm số tựu nhiên n sao cho (n + 2) là ước của (3n + 41)
b) Tìm tất cả các số tựu nhiên n sao cho (n - 4) , (n + 4) và (n +12) đều là các số nguyên tố.
Tìm n thuộc P sao cho
a, n+2,n+4 là số nguyên tố
b,n+2,n+6,n+8,n+12,n+14 đều là số nguyên tố
1) tìm số nguyên tố p sao cho các số sau là số nguyên tố
a) p+2;p+6;p+8;p+10
b)p2+4;p2-4
2) tìm n thuộc N sao cho ; (n-2)(n^2+n-1)
ai nhanh mk tk !
tìm tất cả n thuộc N sao cho n^2-4n+2; n^2-3n+13 và n^2-6n+19 là số nguyên tố
Tìm n thuộc số tự nhiên sao cho A = n2 + 3n - 4 có giá trị là số nguyên tố
Bài 1. Tìm số tự nhiên a nhỏ nhất để a : 7 dư 4; a : 9 dư 5 và a : 15 dư 8.
Bài 2. a) Tìm số tự nhiên n để 16 – 3n là ước của 2n + 1.
b) Tìm số tự nhiên n để n2 + 6n là số nguyên tố.
Bài 3. a) Tìm số nguyên tố p sao cho p + 2; p + 6; p + 8; p + 12; p + 14 cũng là số nguyên tố
b) Tìm số tự nhiên n để các số sau nguyên tố cùng nhau: 4n – 3 và 6n + 1
Tìm tất cả các số tự nhiên n sao cho \(p=3n^3-7n^2+3n+6\) là một số nguyên tố
\(P=3n^3-7n^2+3n+6\)
\(=3n^3+2n^2-9n^2-6n+9n+6\)
\(=n^2\left(3n+2\right)-3n\left(3n+2\right)+3\left(3n+2\right)\)
\(=\left(3n+2\right)\left(n^2-3n+3\right)\)
để p là nguyên tố thì 3n+2 hoặc n2-3n+3 phải bằng 1 (nếu cả hai tích số đều lớn hơn 1 => p là hợp số, trái với đầu bài)
*3n+2=1=>n=-1/3
*n2-3n+3=1<=>n2-3n+2=0
\(\Leftrightarrow n^2-2\times\frac{3}{2}n+\frac{9}{4}-\frac{1}{4}=0\)
\(\Leftrightarrow\left(n-\frac{3}{2}\right)^2=\frac{1}{4}=\left(-\frac{1}{2}\right)^2=\left(\frac{1}{2}\right)^2\)
\(\orbr{\begin{cases}n-\frac{3}{2}=\frac{1}{2}\\n-\frac{3}{2}=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}n=2\\n=1\end{cases}}}\)
nếu n= 2 thì (3n+2)(n2-3n+3)=(3.2+2).1=8 (ko phải số nguyên tố nên ta loại)
vậy n=1
Bài 15. Cho phân số A= 2n+ 3 / 6n +4 (n thuộc N) . Với giá trị nào của n thì A rút gọn được.
Bài 16. Tìm tất cả các số nguyên n sao cho các phân số sau có giá trị là số nguyên
A) 12/3n-1
b)2n+3/7
c)2n+5 / n-3
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 4 | 2 | 6 | 0 | 12 | -6 |