\(\left(\frac{-4}{13}-\frac{17}{19}\right):\left(\frac{-31}{32}\right)+\left(\frac{-9}{13}+\frac{2}{19}\right):\frac{-33}{31}\)
Mọi người giải dúp mk đi , mk k hết
\(\left(\frac{-4}{13}-\frac{17}{19}\right):\left(\frac{-31}{32}\right)+\left(\frac{-9}{13}+\frac{2}{19}\right):\frac{-33}{31}\)
Tính nhanh \(\left(-\frac{4}{13}+\frac{17}{19}\right):-\frac{31}{32}+\left(-\frac{9}{13}+\frac{2}{19}\right):-\frac{33}{31}\)=?
Tính
\(\left(-\frac{4}{13}+\frac{17}{19}\right):-\frac{31}{32}+\left(-\frac{9}{13}+\frac{2}{19}\right):-\frac{33}{31}\)
\(\left(\frac{-3}{8}+\frac{5}{9}:\frac{-11}{37}\right).\left(\frac{33}{19}-\frac{7}{22}.\frac{43}{17}\right).\left(2-\frac{7}{13}.\frac{7}{26}\right)\)
Giúp mk đi , mk k hết cho mn
1) Tính hợp lý
a)\(\frac{31}{23}-\left(\frac{7}{32}+\frac{8}{32}\right)\)
b)\(\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)
c)\(\frac{38}{45}-\left(\frac{8}{45}-\frac{17}{51}-\frac{3}{11}\right)\)
d)\(\left(\frac{17}{28}+\frac{18}{29}-\frac{19}{30}-\frac{30}{31}\right).\left(-\frac{5}{12}+\frac{1}{4}+\frac{1}{6}\right)\)
Trả lời
b)(1/3+12/67+13/41)-(79/67-28/41)
=1/3+12/67+13/41-79/67+28/41
=1/3+(12/67-79/67)+(13/41+28/41)
=1/3+(-67/67)+41/41
=1/3+(-1)+1
=1/3+0
=1/3.
c)38/45-(8/45-17/51-3/11)
=38/45-8/45+17/51+3/11
=30/45+1/3+3/11
=2/3+1/3+3/11
=3/3+3/11
=1+3/11
=1 3/11.
d)(17/28+18/29-19/30-30/31).(-5/12+1/4+1/6)
=(17/28+18/29+19/30+30/31).(-5+3+2/12)
=(17/28+18/29+19/30+30/31).0
=0.
Tính
a/ \(A=17\frac{2}{31}-\left(\frac{15}{17}+6\frac{2}{31}\right)\)
b/ \(B=\left(31\frac{6}{13}+5\frac{9}{41}\right)-36\frac{6}{13}\)
c/ \(C=27\frac{51}{59}-\left(7\frac{51}{59}-\frac{1}{3}\right)\)
d/ \(D=\left(13\frac{29}{31}-3\frac{7}{8}\right)-\left(2\frac{28}{31}-4\right)\)
\(A=17\frac{2}{31}-\left(\frac{15}{17}+6\frac{2}{31}\right)=\left(17\frac{2}{31}-6\frac{2}{31}\right)-\frac{15}{17}=11-\frac{15}{17}=10+\left(1-\frac{15}{17}\right)=10\frac{2}{17}\)
\(B=\left(31\frac{6}{13}-36\frac{6}{13}\right)+5\frac{9}{41}=-5+5\frac{9}{41}=\frac{9}{41}\)
C=\(\left(27\frac{51}{59}-7\frac{51}{59}\right)+\frac{1}{3}=20+\frac{1}{3}=20\frac{1}{3}\)
\(D=\left(13\frac{29}{31}-2\frac{28}{31}\right)+\left(4-3\frac{7}{8}\right)=11\frac{1}{31}+\frac{1}{8}=11\frac{8+31}{31.8}=11\frac{39}{248}\)
Tính:
a) \(\left(31\frac{6}{13}+5\frac{9}{41}\right)-36\frac{6}{13}\)
b) \(\left(17\frac{29}{31}-3\frac{7}{8}\right)-\left(2\frac{28}{31}-4\right)\)
a, \(\left(31\frac{6}{13}+5\frac{9}{41}\right)-36\frac{6}{13}=31\frac{6}{16}+5\frac{9}{41}-36\frac{6}{13}\)
\(=\left(31\frac{6}{16}-31\frac{6}{16}\right)+5\frac{9}{41}\)
\(=0+5\frac{9}{41}=5\frac{9}{41}\)
b, \(\left(17\frac{29}{31}-3\frac{7}{8}\right)-\left(2\frac{28}{31}-4\right)=17\frac{9}{31}-3\frac{7}{8}-2\frac{28}{31}+4\)
1) Tính:
a) \(\frac{\left(1+\frac{17}{1}\right).\left(1+\frac{17}{2}\right).\left(1+\frac{17}{3}\right).....\left(1+\frac{17}{19}\right)}{\left(1+\frac{19}{1}\right).\left(1+\frac{19}{2}\right).\left(1+\frac{19}{3}\right).....\left(1+\frac{19}{17}\right)}\)
b) \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}\)
c) \(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}\)
d) \(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}+\frac{2}{11}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}+\frac{13}{11}}\)
e) \(\frac{\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2017}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}\)
2) CMR: \(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{800}}< \frac{1}{3}\)
b) \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=\frac{-2}{3}\)
d) \(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}+\frac{2}{11}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}+\frac{13}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}=\frac{2}{13}\)
Tính:
a) \(\frac{\left(1+\frac{17}{1}\right).\left(1+\frac{17}{2}\right).\left(1+\frac{17}{3}\right).....\left(1+\frac{17}{19}\right)}{\left(1+\frac{19}{1}\right).\left(1+\frac{19}{2}\right).\left(1+\frac{19}{3}\right).....\left(1+\frac{19}{17}\right)}\)
b) \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}\)
c) \(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}\)
d) \(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}+\frac{2}{11}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}+\frac{13}{11}}\)
e) \(\frac{\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2017}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}\)
2) CMR: \(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{800}}< \frac{1}{3}\)
Làm tiếp:
\(=\left(1+\frac{1}{2}+.....+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+....+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+.........+\frac{1}{2017}\)
\(\Rightarrow\frac{\frac{1}{1009}+....+\frac{1}{2017}}{1-\frac{1}{2}+.....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}=1\)
Bài 2:
Đặt \(A=\frac{1}{2^2}+.......+\frac{1}{2^{800}}\)
\(4A=1+\frac{1}{2^2}+.....+\frac{1}{2^{798}}\)
\(\Rightarrow4A-A=1-\frac{1}{2^{800}}\)
\(\Rightarrow3A=1-\frac{1}{2^{800}}< 1\Rightarrow A< \frac{1}{3}\)
Vậy \(\frac{1}{2^2}+\frac{1}{2^4}+........+\frac{1}{2^{800}}< \frac{1}{3}\)
Bài 1:Tính
a, Xét biểu thức \(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).........\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)..........\left(1+\frac{n+2}{n}\right)}\) với\(n\in N\)
Ta có:\(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).......\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)......\left(1+\frac{n+2}{n}\right)}\)
\(=\frac{\frac{n+1}{1}.\frac{n+2}{2}........\frac{2n+2}{n+2}}{\frac{n+3}{1}.\frac{n+4}{2}.........\frac{2n+2}{n}}\)
\(=\frac{\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right)}{1.2.3.........\left(n+2\right)}}{\frac{\left(n+3\right)\left(n+4\right)........\left(2n+2\right)}{1.2.3.........n}}\)
\(=\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right).1.2.3.......n}{\left(n+3\right)\left(n+4\right)........\left(2n+2\right).1.2.3......\left(n+2\right)}\)
\(=\frac{\left(n+1\right)\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}=1\)
Áp dụng vào bài toán ta có đáp số là:1
b, \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=-\frac{2}{3}\)
c,\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}=\frac{\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}{\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}=\frac{\frac{1}{3}}{\frac{1}{4}}=12\)
d,\(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}=\frac{2}{13}\)
e,Xét mẫu số ta có:
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)
\(=1+\frac{1}{2}-2.\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-2.\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-2.\frac{1}{2016}+\frac{1}{2017}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{2016}\right)\)