\(Q=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}-6\sqrt{2}\)
1. \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{8}\)
2. \(\dfrac{\sqrt{3-2\sqrt{3}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
3.\(\sqrt{7+2\sqrt{6}}-\sqrt{\left(\sqrt{6-1}\right)^2}\)
4\(\sqrt{5-2\sqrt{6}}-\sqrt{5+\sqrt{24}}\)
5.\(\sqrt{4\sqrt{5+\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}}\)
6.\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
1. \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{8}\)
2. \(\dfrac{\sqrt{3-2\sqrt{3}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
3.\(\sqrt{7+2\sqrt{6}}-\sqrt{\left(\sqrt{6}-1\right)^2}\)
4\(\sqrt{5-2\sqrt{6}}-\sqrt{5+\sqrt{24}}\)
5.\(\sqrt{4\sqrt{5+\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}}\)
6.\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
Tính: a. \(\left(\sqrt{10}+\sqrt{2}\right)\cdot\left(6-2\sqrt{5}\right)\cdot\sqrt{3+\sqrt{5}}\)
b. \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
c. \(\sqrt{3,5-\sqrt{6}}+\sqrt{3,5+\sqrt{6}}\)
d, \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)
e, \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
e) \(E=A-\sqrt{2}\)
\(A=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
\(A^2=8-2\sqrt{16-7}=8-6=2\)
\(A>0=>A=\sqrt{2}\)
\(E=A-\sqrt{2}=0\)
a)\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)
=\(\left(6\sqrt{10}+6\sqrt{2}-10\sqrt{2}-2\sqrt{10}\right)\sqrt{3+\sqrt{5}}\)
=\(\left(4\sqrt{10}-4\sqrt{2}\right)\sqrt{3+\sqrt{5}}=\left(4\sqrt{10}-4\sqrt{2}\right)\dfrac{\sqrt{5}+1}{2}\)
=\(\dfrac{20\sqrt{2}+4\sqrt{10}-4\sqrt{10}-4\sqrt{2}}{2}\)
=\(\dfrac{16\sqrt{2}}{2}=8\sqrt{2}\)
b)\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
=\(\dfrac{\sqrt{5}+1-\sqrt{5}+1-2}{\sqrt{2}}=0\)
c)\(\sqrt{3,5-\sqrt{6}}+\sqrt{3,5+\sqrt{6}}\)
=\(\dfrac{\sqrt{6}-1+\sqrt{6}+1}{\sqrt{2}}=2\sqrt{3}\)
d)\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)
=\(\dfrac{\sqrt{7}-1-\sqrt{7}-1+\sqrt{14}}{\sqrt{2}}=\sqrt{7}-1\)
e)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
=\(\dfrac{\sqrt{7}+1-\sqrt{7}+1-2}{\sqrt{2}}=0\)
a) \(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right).\sqrt{3+\sqrt{5}}\)
\(=\sqrt{2}\left(\sqrt{5}+1\right).2.\left(3-\sqrt{5}\right).\sqrt{3+\sqrt{5}}\)
\(=\left(\sqrt{5}+1\right)\left(3-\sqrt{5}\right).\sqrt{6+2\sqrt{5}}\)
\(=\left(\sqrt{5}+1\right)\left(3-\sqrt{5}\right).\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\left(\sqrt{5}+1\right)\left(3-\sqrt{5}\right).\left(\sqrt{5}+1\right)\)
\(=\left(\sqrt{5}+1\right)^2.\left(3-\sqrt{5}\right)\)
\(=\left(6+2\sqrt{5}\right)\left(3-\sqrt{5}\right)\)
\(=18-6\sqrt{5}+6\sqrt{5}-10\)
\(=8\)
a) \(\sqrt{13-4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
b) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
c) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
d) \(\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
e) \(\sqrt{9+4\sqrt{5}}\)
f) \(\sqrt{23+8\sqrt{7}}\)
a)\(\sqrt{13-4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{12-2.2\sqrt{3}.1+1}+\sqrt{4-2.2.\sqrt{3}+3}\)
\(=\sqrt{\left(2\sqrt{3}-1\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left|2\sqrt{3}-1\right|+\left|2-\sqrt{3}\right|\)
\(=2\sqrt{3}-1+2-\sqrt{3}=\sqrt{3}+1\)
b)\(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5+2\sqrt{5}.1+1}+\sqrt{5-2\sqrt{5}.1+1}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\left(\sqrt{5}+1\right)+\left(\sqrt{5}-1\right)=2\sqrt{5}\)
c)\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3+2\sqrt{3}.1+1}-\sqrt{3-2\sqrt{3}.1+1}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left(\sqrt{3}+1\right)-\left(\sqrt{3}-1\right)=2\)
d)\(\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{4+2.2\sqrt{3}+3}+\sqrt{4-2.2.\sqrt{3}+3}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left(2+\sqrt{3}\right)+\left(2-\sqrt{3}\right)=4\)
e)\(\sqrt{9+4\sqrt{5}}=\sqrt{5+2.\sqrt{5}.2+4}=\sqrt{\left(\sqrt{5}+2\right)^2}=\sqrt{5}+2\)
f)\(\sqrt{23+8\sqrt{7}}=\sqrt{16+2.4.\sqrt{7}+7}=\sqrt{\left(4+\sqrt{7}\right)^2}=4+\sqrt{7}\)
a. P= (\(3+\sqrt{2}+\sqrt{6}\))(\(\sqrt{6-3\sqrt{3}}\))
b. A=(\(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\)): (\(\sqrt{6}+11\))
c. B= \(\frac{\sqrt{8-2\sqrt{12}}}{\sqrt{3}-1}\)-\(\sqrt{8}\)
d. C= \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
đ. D=\(\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
e. E= \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
ê. G= \(\sqrt{4+5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
g. H=\(\frac{2\sqrt{4+\sqrt{5+21+\sqrt{80}}}}{\sqrt{10}-\sqrt{2}}\)
i. I=\(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)
k. K=\(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Rút gọn biểu thức:
a)\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
b)\(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
c)\(5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}\)
d)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
e)\(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)
a) đặt \(A=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
nhân cả hai vế với \(\sqrt{2}\), ta được:
\(\sqrt{2}A=\sqrt{2}\sqrt{4-\sqrt{7}}-\sqrt{2}\sqrt{4+\sqrt{7}}\)
\(=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(1+ \sqrt{7}\right)^2}\)
\(=\left|1-\sqrt{7}\right|-\left|1+\sqrt{7}\right|\)
\(=\sqrt{7}-1-\sqrt{7}-1\)
\(=-2\)
\(\Rightarrow A=-\frac{2}{\sqrt{2}}=-\sqrt{2}\)
a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)
\(=\frac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)
\(=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)
1) \(\left(\sqrt{6}-\sqrt{8}\right)\left(\sqrt{6}+\sqrt{8}\right).\)
2)\(\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
3)\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
4)\(\sqrt{2\sqrt{3}-4}+\sqrt{2\sqrt{3}+4}\)
5)\(\sqrt{4\sqrt{6}+11}-\sqrt{11-4\sqrt{6}}\)
6)\(\sqrt{10+2\sqrt{11}}-\sqrt{10-2\sqrt{11}}\)
7)\(\sqrt{5-2\sqrt{7-2\sqrt{6}}}\)
AI ĐÓ TỐT BỤNG GIÚP MK ZỚI:((
1) \(\left(\sqrt{6}-\sqrt{8}\right)\left(\sqrt{6}+\sqrt{8}\right)\)
\(=\left(\sqrt{6}\right)^2-\left(\sqrt{8}\right)^2\)
\(=6-8=-2\)
2) \(\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
\(=3^2-\left(\sqrt{5}\right)^2\)
\(=9-5=4\)
3) \(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
\(=\sqrt{4-4\sqrt{3}+3}+\sqrt{4+4\sqrt{3}+3}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
4) Xét ta thấy: \(2\sqrt{3}=\sqrt{12}< \sqrt{16}=4\)
=> \(2\sqrt{3}-4< 0\) => vô lý không tm đk căn
5) Đặt \(A=\sqrt{4\sqrt{6}+11}-\sqrt{11-4\sqrt{6}}\)
\(\Rightarrow A^2=\left(\sqrt{11+4\sqrt{6}}-\sqrt{11-4\sqrt{6}}\right)^2\)
\(=11+4\sqrt{6}-2\sqrt{\left(11+4\sqrt{6}\right)\left(11-4\sqrt{6}\right)}+11-4\sqrt{6}\)
\(=22-2\sqrt{121-96}\)
\(=22-2\sqrt{5}\)
=> \(A=\sqrt{22-2\sqrt{5}}\)
6) Đặt \(B=\sqrt{10+2\sqrt{11}}-\sqrt{10-2\sqrt{11}}\)
\(\Leftrightarrow B^2=\left(\sqrt{10+2\sqrt{11}}-\sqrt{10-2\sqrt{11}}\right)^2\)
\(=10+2\sqrt{11}-2\sqrt{\left(10+2\sqrt{11}\right)\left(10-2\sqrt{11}\right)}+10-2\sqrt{11}\)
\(=20-2\sqrt{100-44}\)
\(=20-4\sqrt{14}\)
=> \(B=\sqrt{20-4\sqrt{14}}\)
Rút gọn :
a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
b) \(\dfrac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
a) S=\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}.\)
\(\sqrt{2}.\)S=\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}.\)
\(\sqrt{2}.\)S =\(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(\sqrt{2}.\)S=|\(\sqrt{7}\)-1|+|\(\sqrt{7}\)+1|=\(\sqrt{7}\)-1-\(\sqrt{7}\)-1=- 2
S= - \(\sqrt{2}.\)
b)\(=\dfrac{\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}=...\)
b/ \(A=\dfrac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
\(A=\dfrac{\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
\(A=\dfrac{3}{1}=3\)
Tính
1, a = \(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
2, x = \(\sqrt[3]{4+\sqrt{80}-\sqrt[3]{\sqrt{80}-4}}\)
3, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
4, \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
5,\(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)
3: \(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
4: \(=\dfrac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}=-\sqrt{2}\)
5: \(=\dfrac{\sqrt{23-8\sqrt{7}}}{3}+\dfrac{\sqrt{23+8\sqrt{7}}}{3}\)
\(=\dfrac{4-\sqrt{7}+4+\sqrt{7}}{3}=\dfrac{8}{3}\)