cho a,b,c đôi 1 khác nhau và khác 0 thỏa mãn: a+1/b=b+1/c=c+1/a.chứng minh rằng: abc+1 hoặc abc=-1
Cho a, b, x là các số thực đôi khác nhau và khác 0 thỏa mãn:
\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
Chứng minh rằng abc= 1 hoặc abc= -1
Cho a,b,c là ba số thực đôi một khác nhau và khác không thỏa mãn :
\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\) Chứng minh rằng : abc = 1 hoặc abc = -1
từ giả thiết suy ra
\(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\frac{-1}{c^3}\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{-3.1}{\frac{a.1}{b.\left(\frac{1}{a+\frac{1}{b}}\right)}}=3...\)
\(\Rightarrow\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}\)
\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
=abc.3/(abc)=3
Câu hỏi của ngô thị đào - Toán lớp 8 - Học toán với OnlineMath
Bài làm đúng.
cho a, b, c là 3 số thực khác nhau, khác 1 và khác 0 thỏa mãn: a + 1/b = b + 1/c = c + 1/a
CMR: abc = -1 hoặc abc = 1
cho a,b,c là ba số thực đôi một khác nhau và thỏa mãn a + \(\frac{1}{b}\) = b + \(\frac{1}{c}\) = c + \(\frac{1}{a}\),
chứng minh rằng abc=1 hoặc abc= -1
Với : \(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\); a; b ;c đôi một khác nhau và khác 0
Chứng minh rằng abc= 1 hoặc - 1
\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
=> \(a-b=\frac{1}{c}-\frac{1}{b}\) => a - b = \(\frac{b-c}{bc}\) (1)
b - c = \(\frac{1}{a}-\frac{1}{c}\) => b - c = \(\frac{c-a}{ac}\) (2)
c - a = \(\frac{1}{b}-\frac{1}{a}=\frac{a-b}{ab}\) (3)
Nhân vế với vế của (1)(2)(3) => \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=\frac{b-c}{bc}.\frac{c-a}{ac}.\frac{a-b}{ab}\)
=> (abc)2 = 1 => abc = 1 hoặc abc = -1
Vậy...
Cho a, b, c là các số thực dương đôi một khác nhau thỏa mãn:
\(\dfrac{\sqrt{ab}+1}{\sqrt{a}}=\dfrac{\sqrt{bc}+1}{\sqrt{b}}=\dfrac{\sqrt{ca}+1}{\sqrt{c}}\)
Chứng minh rằng abc = 1
Lời giải:
Đổi \((\sqrt{a}, \sqrt{b}, \sqrt{c})=(x,y,z)\) thì bài toán trở thành
Cho $x,y,z$ thực dương phân biệt tm: $\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$
CMR: $xyz=1$
-----------------------------
Có:
$\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$
$\Leftrightarrow y+\frac{1}{x}=z+\frac{1}{y}=x+\frac{1}{z}$
\(\Rightarrow \left\{\begin{matrix} y-z=\frac{x-y}{xy}\\ z-x=\frac{y-z}{yz}\\ x-y=\frac{z-x}{xz}\end{matrix}\right.\)
\(\Rightarrow (y-z)(z-x)(x-y)=\frac{(x-y)(y-z)(z-x)}{x^2y^2z^2}\)
Mà $x,y,z$ đôi một phân biệt nên $(x-y)(y-z)(z-x)\neq 0$
$\Rightarrow 1=\frac{1}{x^2y^2z^2}$
$\Rightarrow x^2y^2z^2=1$
$\Rightarrow xyz=1$ (do $xyz>0$)
Ta có đpcm.
Cho a,b,c khác 0 và đôi một khác nhau thỏa mãn
b+c/bc=2/a.Chứng minh b/c=a-b/c-a
cho ;b;c khác 0 thỏa mãn;
a+1/b= b+ 1/c =c+1/a. cmr abc=1 hoặc abc=-1
cho a;b;c là 3 số hữu tỉ từng đôi một khác nhau và khác 0
biết \(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\) cmr: hoặc abc=1 hoặc abc=-1