Cho x thuộc N
Chứng tỏ A = 10n + 18n - 1chia hết cho 27
3.Cho n thuộc N
Chứng tỏ A=10n + 18n - 1 chia hết cho 27
cho A = 10n+18n-1 chia hết cho 27
suy ra 10n+18n-1 chia hết cho 27
suy ra n=1
Chứng minh rằng:
b) ( n^4 - 10n^2 + 9) chia hết cho 384(n lẻ thuộc Z)
c) ( 10^n + 18n - 28) chia hết cho 27 ( n thuộc N)
\(b,n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)\\ =\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Vì \(n\in Z\) và n lẻ nên \(n=2k+1\left(k\in Z\right)\)
\(\Leftrightarrow\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\\ =2k.\left(2k+2\right).\left(2k-2\right).\left(2k+4\right)\\ =16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)
Vì \(k,k+1,k-1,k+2\) là 4 số nguyên liên tiếp nên chia hết cho \(1.2.3.4=24\)
Do đó \(16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮24.16=384\)
\(c,\forall n=1\Leftrightarrow10+18-28=0⋮27\\ \text{G/s }n=k\Leftrightarrow\left(10^k+18k-28\right)⋮27\\ \Leftrightarrow10^k+18k-28=27m\left(m\in N\right)\\ \Leftrightarrow10^k=27m-18k+28\\ \forall n=k+1\Leftrightarrow10^{k+1}+18\left(k+1\right)-28\\ =10.10^k+18k-10\\ =10\left(27m-18k+28\right)+18k-10=270m-162k+270⋮27\)
Theo PP quy nạp ta đc đpcm
Chứng minh rằng:
a) ( n^5 - n) chia hết cho 30
b) ( n^4 - 10n^2 + 9) chia hết cho 384(n lẻ thuộc Z)
c) ( 10^n + 18n - 28) chia hết cho 27 ( n thuộc N)
Chứng minh rằng:
a) ( n^5 - n) chia hết cho 30
b) ( n^4 - 10n^2 + 9) chia hết cho 384(n lẻ thuộc Z)
c) ( 10^n + 18n - 28) chia hết cho 27 ( n thuộc N)
Chứng tỏ A=10n+18n-1chia hết cho 2 (với n là số tự nhiên)
a) Cho S = 5 + 52+ 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n+ 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
chứng minh rằng :
a,2n+11...........1 chia hết cho 3 (n chữ số 1)
b,10^n+18n-1chia hết cho 27
Chứng tỏ A=10n+18n-1 chia hết cho 27(với n thuộc N)
10n+18n-1
=10n-1-9n+27n
=999..9-9n+27n
=9(11...1-n)+81n chia hết cho 27.
a) Cho S = 5 + 52 + 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1 và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n + 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27