a, (2x+3)2-(x-2)2=0
b, (x – 1) 2 – x2 – 6x–9 = 0
. Tìm x, biết:
a) 4x2 – 9 = 0
b) (x + 5)2 – (x – 1)2= 0
c) x2 – 6x – 7 = 0
d) (x + 1)2 – (2x - 1)2 = 0
a)4x2-9=0
⇔ (2x-3)(2x+3)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b)(x+5)2-(x-1)2=0
⇔ (x+5-x+1)(x+5+x-1)=0
⇔ 12(x+2)=0
⇔ x=-2
c)x2-6x-7=0
⇔ x2-7x+x-7=0
⇔ x(x-7)+(x-7)=0
⇔ (x-7)(x+1)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)
d)(x+1)2-(2x-1)2=0
⇔ (x+1-2x+1)(x+1+2x-1)=0
⇔3x(2-x)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
a, 4x2 - 9 = 0
<=> 4x2 = 9
<=> x2 = \(\dfrac{9}{4}\) => x = \(\sqrt{\dfrac{9}{4}}\)
b, (x + 5 )2 - ( x - 1 )2 = 0
<=> ( x+5-x+1 )(x+5+x-1) = 0
<=> 6(2x+4) = 0
<=> 12x+24=0
<=> 12x = -24
<=> x = -2
c, x2-6x-7=0
<=> x2+x-7x-7=0
<=> x(x+1)-7(x+1)=0
<=> (x-7)(x+1)=0
=> x+7=0 hoặc x+1=0
+ x-7=0 => x=7
+ x+1=0 => x=-1
d, \(\left(x+1\right)^2-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-2x+1\right)\left(x+1+2x-1\right)=0\)
<=> (-x+2).3x=0
=> x=0 hoặc (-x+2).3=0
+ (-x+2).3=0 => -3x+6=0 => x=-2
b) (x +5)2 -(x -1)2=0
<=> [(x +5) -(x -1)][(x +5) +(x -1)]=0
<=> (x +5 -x +1)(x +5 +x -1)=0
<=> 6(2x+4)=0 <=>12(x +2)=0
=> x +2=0=> x=-2
vậy x= -2
c) x2 -6x -7=0
<=> x2 -7x +x -7=0
<=> (x2 +x)( -7x -7)=0
<=> x(x +1).-7(x +1)=0
<=> (x +1)(x -7)=0
<=> \(\left\{{}\begin{matrix}x+1=0\\x-7=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=-1\\x=7\end{matrix}\right.\)
Vậy S={-1; 7}
d) (x +1)2 -(2x -1)2=0
<=> [(x -1)-(2x -1)][(x -1)+(2x -1)]=0
<=> (x -1 -2x +1)(x -1 +2x -1)=0
<=> (x -2x)(3x -2)<=> -x(3x -2)=0
<=> \(\left\{{}\begin{matrix}-x=0\\3x-2=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy S={0; \(\dfrac{2}{3}\)}
a) (2x +1)(3 – x)(4 - 2x) = 0 b)2x(x – 3) + 5(x – 3) = 0
c) (x2 – 4) – (x – 2)(3 – 2x) = 0 d) x2 – 5x + 6 = 0
e) (2x + 5)2 = (x + 2)2 f) 2x3 + 6x2 = x2 + 3x
a: (2x+1)(3-x)(4-2x)=0
=>(2x+1)(x-3)(x-2)=0
hay \(x\in\left\{-\dfrac{1}{2};3;2\right\}\)
b: 2x(x-3)+5(x-3)=0
=>(x-3)(2x+5)=0
=>x=3 hoặc x=-5/2
c: =>(x-2)(x+2)+(x-2)(2x-3)=0
=>(x-2)(x+2+2x-3)=0
=>(x-2)(3x-1)=0
=>x=2 hoặc x=1/3
d: =>(x-2)(x-3)=0
=>x=2 hoặc x=3
e: =>(2x+5+x+2)(2x+5-x-2)=0
=>(3x+7)(x+3)=0
=>x=-7/3 hoặc x=-3
f: \(\Leftrightarrow2x^3+5x^2-3x=0\)
\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)
hay \(x\in\left\{0;-3;\dfrac{1}{2}\right\}\)
Giải các phương trình tích sau:
1.a)(3x – 2)(4x + 5) = 0 b) (2,3x – 6,9)(0,1x + 2) = 0
c)(4x + 2)(x2 + 1) = 0 d) (2x + 7)(x – 5)(5x + 1) = 0
2. a)(3x + 2)(x2 – 1) = (9x2 – 4)(x + 1)
b)x(x + 3)(x – 3) – (x + 2)(x2 – 2x + 4) = 0
c)2x(x – 3) + 5(x – 3) = 0 d)(3x – 1)(x2 + 2) = (3x – 1)(7x – 10)
3.a)(2x – 5)2 – (x + 2)2 = 0 b)(3x2 + 10x – 8)2 = (5x2 – 2x + 10)2
c)(x2 – 2x + 1) – 4 = 0 d)4x2 + 4x + 1 = x2
4. a) 3x2 + 2x – 1 = 0 b) x2 – 5x + 6 = 0
c) x2 – 3x + 2 = 0 d) 2x2 – 6x + 1 = 0
e) 4x2 – 12x + 5 = 0 f) 2x2 + 5x + 3 = 0
Bài 1:
a) (3x - 2)(4x + 5) = 0
<=> 3x - 2 = 0 hoặc 4x + 5 = 0
<=> 3x = 2 hoặc 4x = -5
<=> x = 2/3 hoặc x = -5/4
b) (2,3x - 6,9)(0,1x + 2) = 0
<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
<=> 2,3x = 6,9 hoặc 0,1x = -2
<=> x = 3 hoặc x = -20
c) (4x + 2)(x^2 + 1) = 0
<=> 4x + 2 = 0 hoặc x^2 + 1 # 0
<=> 4x = -2
<=> x = -2/4 = -1/2
d) (2x + 7)(x - 5)(5x + 1) = 0
<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
<=> 2x = -7 hoặc x = 5 hoặc 5x = -1
<=> x = -7/2 hoặc x = 5 hoặc x = -1/5
bài 2:
a, (3x+2)(x^2-1)=(9x^2-4)(x+1)
(3x+2)(x-1)(x+1)=(3x-2)(3x+2)(x+1)
(3x+2)(x-1)(x+1)-(3x-2)(3x+2)(x+1)=0
(3x+2)(x+1)(1-2x)=0
b, x(x+3)(x-3)-(x-2)(x^2-2x+4)=0
x(x^2-9)-(x^3+8)=0
x^3-9x-x^3-8=0
-9x-8=0
tự tìm x nha
Tìm x biết rằng:
a) ( x 2 + 2x + 4)(2 - x) + x(x - 3)(x + 4) - x 2 + 24 = 0;
b) x 2 + 3 ( 5 − 6 x ) + ( 12 x − 2 ) x 4 + 3 = 0 .
Tìm x, biết:
a) 3x(x - 1) + x - 1 = 0;
b) (x - 2)( x 2 + 2x + 7) + 2( x 2 - 4) - 5(x - 2) = 0;
c) ( 2 x - 1 ) 2 - 25 = 0;
d) x 3 + 27 + (x + 3)(x - 9) = 0.
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
a) x2(x - 5) + 5 - x = 0; b) 3x4 - 9x3 = -9x2 + 27x;
c) x2(x + 8) + x2 = -8x; d) (x + 3)(x2 -3x + 5) = x2 + 3x.
e) 3x(x - 1) + x - 1 = 0;
f) (x - 2)(x2 + 2x + 7) + 2(x2 - 4) - 5(x - 2) = 0;
g) (2x - 1)2 - 25 = 0;
h) x3 + 27 + (x + 3)(x - 9) = 0.
i)8x3 - 50x = 0; k) 2(x + 3)-x2 - 3x = 0;
m)6x2 - 15x - (2x - 5)(2x + 5) =
a: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)
d: \(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x+3=0\)
hay x=-3
Tìm x, biết:
a) ( x + 3 ) 2 + (4 - x)(x + 4) = 1;
b) (2 - x) 3 +(3 +x)(9 - 3x + x 2 ) + 6x(1 - x) = 17;
c) x 4 - 2 x 2 +1 = 0.
a) Tìm được x = -4.
b) Tìm được x = 3.
c) Tìm được x = ±1.
Tìm x; biết:
f.x3 – 7x2 = – 6x g.(x + 1)(x + 2)(x + 4)(x + 5) = 4
h.(x2 – 0,5) : 2x – (3x – 1)2 : (3x – 1) = 0
i. (x + 3)(x2 – 3x + 9) – x(x – 2)(x + 2) = 15
g: \(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4=0\)
\(\Leftrightarrow\left(x^2+6x\right)^2+13\left(x^2+6x\right)+36=0\)
\(\Leftrightarrow\left(x+3\right)^2\left(x^2+6x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\sqrt{5}-3\\x=-\sqrt{5}-3\end{matrix}\right.\)
tìm x biết
a/ x^3-x^2-x+1=0
b/(2x^3-3)^2-(4x^2-9)=0
c/x^4+2x^3-6x-9=0
d/2(x+5)-x^2-5x=0
\(a)\)\(x^3-x^2-x+1=0\)
\(\Leftrightarrow\)\(x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(x-1\right)^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
Vậy \(x=1\) hoặc \(x=-1\)
Chúc bạn học tốt ~
a) x3-x2-x+1 = 0 \(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)\(\Leftrightarrow x^2-1=0\)hoặc x-1=0
\(\Leftrightarrow x=1\)
\(c)\)\(x^4+2x^3-6x-9=0\)
\(\Leftrightarrow\)\(\left(x^4-9\right)+\left(2x^3-6x\right)=0\)
\(\Leftrightarrow\)\(\left(x^2-3\right)\left(x^2+3\right)+2x\left(x^2-3\right)=0\)
\(\Leftrightarrow\)\(\left(x^2-3\right)\left(x^2+3+2x\right)=0\)
\(\Leftrightarrow\)\(x^2-3=0\)
Hoặc \(x^2+3+2x=0\)
\(\Leftrightarrow\)\(x^2=3\)
Hoặc \(x\left(x+2\right)=-3\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Hoặc \(x;\left(x-2\right)\inƯ\left(-3\right)\)
Ta có bảng :
\(x\) | \(1\) | \(-3\) | \(-1\) | \(3\) |
\(x-2\) | \(-3\) | \(1\) | \(3\) | \(-1\) |
\(x\) | \(1\) | \(-3\) | \(-1\) | \(3\) |
\(x\) | \(-1\) | \(3\) | \(5\) | \(1\) |
Vậy \(x\in\left\{1;-1;3;-3;5\right\}\)
Chúc bạn học tốt ~