CHO ĐƯỜNG TRÒN TÂM O BÁN KÍNH R VẼ CÁC ĐIỂM A,B,C,D THUỘC ĐƯỜNG TRÒN ĐÓ. TÌM GIÁ TRỊ LỚN NHẤT CỦA DIỆN TÍCH TỨ GIÁC ABCD THEO R
cho các điểm A,B,C,D thuooch đường tròn tâm O bán kính R. tìm giá trị lớn nhất của \(S_{ABCD}\)
Cho mặt cầu (S) bán kính R=5cm. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 πcm . Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc (S) (không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 32 3 c m 3
B. 60 3 c m 3
C. 20 3 c m 3
D. 96 3 c m 3
Cho mặt cầu (S) bán kính R = 5cm. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 π Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc (S) (không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 32 3 c m 3 .
B. 60 3 c m 3 .
C. 20 3 c m 3 .
D. 96 3 c m 3 .
Cho đường tròn tâm O, đường kính AB, M là một điểm thuộc nửa đường tròn. Qua M vẽ vẽ tiếp tuyến với nửa đường tròn, gọi D và C theo thứ tự là các hình chiếu vuông góc của A và B.
a) Chứng minh M là trung điểm của CD
b) Chứng minh AB = BC + AD
c) Giả sử góc AOM > góc BOM. Từ B vẽ đường tròn vuông góc với BC, đường thẳng này cắt AD tại E. Chứng minh E thuộc nửa đường tròn tâm O
d) Xác định vị trí của M trên 1/2 O sao cho tứ giác ABCD có diện tích lớn nhất và tính diện tích đó theo nửa bán kính rồi theo 1/2 đường tròn đã cho.
Giúp em với ạ TvT
Cho nửa đường tròn (O) có tâm O và đường kính AB=2R. Gọi M, N là hai điểm di động trên nửa đường (O) sao cho M thuộc cung AN và tổng khoảng cách từ A, B đến MN bằng \(R\sqrt{3}\). Gọi I là giao điểm của các đường thẳng AN và BM; K là giao điểm của AM và BN.
a) Chứng minh K, M, I, N cùng thuộc một đường tròn (C).
b) Tính độ dài MN và bán kính đường (C) theo R
c) Xác định vị trí M, N sao cho tam giác KAB có diện tích lớn nhất. Tính giá trị lớn nhất đó theo R.
Cho mặt cầu (S) bán kính R = 5 c m . Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 π (cm). Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc (S)(D không thuộc đường tròn (C) và tam giác ABC đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 10 3 c m 3
B. 15 3 c m 3
C. 32 3 c m 3
D. 40 3 c m 3
Chọn C.
Phương pháp: Tìm vị trí điểm D để thể tích ABCD lớn nhất.
Cho mặt cầu (S) bán kính R=5cm. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 π (cm). Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc (S) (D không thuộc đường tròn (C)) và tam giác ABC đều. Tính thể tích lớn nhất của tứ diện ABCD.
Cho mặt cầu (S) bán kính R = 5 c m . Mặt phẳng P cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 π cm . Bốn điểm A, B, C, D thay đổi sao A, B, C cho thuộc đường tròn (C), điểm D thuộc (S) (D không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 32 3 c m 3
B. 60 3 c m 3
C. 20 3 c m 3
D. 96 3 c m 3
Cho mặt cầu S có bán kính R = 5 c m . Mặt phẳng P cắt mặt cầu S theo giao tuyến là đường tròn C có chu vi bằng 8 π . Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn C , điểm D thuộc S (D không thuộc đường tròn C ) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 32 3 c m 3
B. 60 3 c m 3
C. 20 3 c m 3
D. 96 3 c m 3