phân tích đa thức thành nhân tử:
1/(x+1)(x+2)(x+4)(x+5)+112
2/ (x+1)(x+2)(x+3)(x+4)-24
Phân tích đa thức thành nhân tử (x+1)(x+2)(x+3)(x+4) – 24
Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(\left(x+1\right)\left(x+4\right)\right)\left(\left(x+2\right)\left(x+3\right)\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
- Đặt \(x^2+5x+5=a\)
\(=\left(a-1\right)\left(a+1\right)-24=a^2-1-24=a^2-25\)
\(=\left(a-5\right)\left(a+5\right)\)
Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24-24\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
phân tích đa thức thành nhân tử
a,(x+1).(x+2).(x+3).(x+4)+1
b,(x+1).(x+2).(x+3).(x+4)-24
c,(x+1).(x+3).(x+5).(x+7)+15
d,.(x+2).(x+3).(x+4).(x+5)-24
Bài làm:
a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
Đặt \(x^2+5x+5=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)
\(=\left(x^2+5x+5\right)^2\)
b) Tương tự như a phân tích và đặt ra được: \(t^2-1-24=t^2-25=\left(t-5\right)\left(t+5\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)=x\left(x+5\right)\left(x^2+5x+10\right)\)
c) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(x^2+8x+11=t\)\(\Rightarrow\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1\)
\(=\left(t-1\right)\left(t+1\right)=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)
d) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x+11=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)-24=t^2-1-24=t^2-25\)
\(=\left(t-5\right)\left(t+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
Làm mẫu cho 1 vd:
a, (x+1)(x+2)(x+3)(x+4)+1
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)(1)
Đặt \(y=x^2+5x+5\)
Khi đó ::
(1) = \(\left(y-1\right)\left(y+1\right)+1\)
\(=y^2-1+1=y^2\)
Thay vào ta được: \(\left(x^2+5x+5\right)^2\)
a) (x+1)(x+2)(x+3)(x+4)+1=[(x+1)(x+4)].[(x+2)(x+3)]+1=(x2+5x+4)(x2+5x+6)+1
đặt t=x2+5x+5 ta có đa thức (t-1)(t+1)+1=t2-1+1=t2. mà t=x2+5x+5
=> (x+1)(x+2)(x+3)(x+4)+1=(x2+5x+5)2
b) (x+1)(x+2)(x+3)(x+4)-24. theo kết quả câu (a) ta được (x+1)(x+2)(x+3)(x+4)=(x2+5x+4)(x2+5x+6)
đặt t=x2+5x+5 ta có đa thức (t-1)(t+1)-24=t2-1-24=t2-25=(t-5)(t+5)
mà t=x2+5x+5 => (t-5)(t+5)=(x2+5x)(x2+5x+10)
c) (x+1)(x+3)(x+5)(x+7)+15=[(x+1)(x+7)].[(x+3)(x+5)]+15=(x2+8x+7)(x2+8x+15)+15
đặt x2+8x+11=t ta có đa thức (t-4)(t+4)+15=t2-16+15=t2-1=(t-1)(t+1)
mà t=x2+8x+11 => (t-1)(t+1)=(x2+8x-10)(x2+8x+12)
d) (x+2)(x+3)(x+4)(x+5)-24=[(x+2)(x+5)][(x+3)(x+4)]-24=(x2+7x+12)(x2+7x+10)-24
đặt t=x2+7x+11 ta có đa thức (t-1)(t+1)-24=t2-1-24=t2-25=(t+5)(t-5)
mà t=x2+7x+11 => (t-5)(t+5)=(x2+7x+6)(x2+7x+16)
phân tích đa thức thành nhân tử (x+1)(x+2)(x+3)(x+4)-24
= (x+1)(x+4)(x+2)(x+3)-24
= (x2 +5x+4) (x2 +5x+6)-24
Đặt x2 +5x+4 =a
=>(x2 +5x+4)(x2+5x+6)-24
= a(a+2)-24 = a2 +2a-24
= a2 +6a-4a-24
= a(a+6) - 4(a+6) = (a-4)(a+6)
= (x2 +5x+a-4)(x2 +5x+4+6) = (x2 +5x)(x2 +5x+10)
1) Phân tích đa thức thành nhân tử: M = (x + 2)(x + 3)(x + 4)(x + 5) – 24
Giúp mik nha
Nhớ mình nha mình âm diểm rồi:
M=(x+2)(x+3)(x+4)(x+5)-24
M=(x2+3x+2x+6)(x2+5x+4x+20)-24
M=(x2+5x+6)(x2+9x+20)-24
M=x4+9x3+20x2+5x3 +14x+100x+6x2+54x+120-24
M=x4+14x3+26x2+168x+96
Phân tích đa thức thành nhân tử:
(x + 1)(x + 2)(x + 3)(x + 4) - 24
=(x+1)(x+4)(x+2)(x+3) - 24
=(x^2+5x+4)(x^2+5x+6) - 24
=(x^2+5x+5-1)(x^2+5x+5+1) - 24 [hằng đẳng thức a^2-b^2 nha]
=(x^2+5x+5)^2-1^2-24
=(x^2+5x+5)^2 - 25
=(x^2+5x+5)^2 - 5^2
=(x^2+5x+5-5)(x^2+5x+5+5)
=(x^2+5x)(x^2+5x+10
Phân tích đa thức thành nhân tử
( x + 1 ) (x + 2) (x+3) (x+4) - 24
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
Đặt \(x^2+5x+4=t\)
\(\Rightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=t\left(t+2\right)-24\)
\(=t^2+2t+1-25\)
\(=\left(t+1\right)^2-5^2\)
\(=\left(t+1+5\right)\left(t+1-5\right)\)
\(=\left(t+6\right)\left(t-4\right)\)
\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
Phân tích đa thức thành nhân tử:
( x + 1)( x+ 2)( x + 3)( x + 4) - 24
Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\)\(\left(x+4\right)-24\)
= \(\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\) (*)
. Đặt \(x^2+5x+4=t\) (1)
(*) <=> \(t\left(t+2\right)-24=t^2+2t-24=\left(t-4\right)\left(t+6\right)\) (2)
Thay (1) vào (2) ta suy ra : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\) \(\left(x+4\right)-24=\)\(\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\) = \(\left(x^2+5x\right)\left(x^2+5x+10\right)\) = \(x\left(x+5\right)\left(x^2+5x+10\right)\)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
\(=\left(x^2+5x+4\right)^2+2.\left(x^2+5x+4\right)+1-25\)
\(=\left(x^2+5x+4+1\right)^2-5^2\)
\(=\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
Ta có
<=>(x+1)(x+4)(x+2)(x+3)-24
<=>(X^2+5x4)(x^2+5x+6)-24
Đặt x^2+5x+5=x (1)
Ta có
<=>(x+1)(x-1)-24
<=>x^2-25
Thay 1 vào x ta có
(x^2+5x+5)^2-5^2
<=>(x^2+10)(x^2+5x)(dpcm)
Bài 1 : Phân tích các đa thức sau thành nhân tử :
1) 15x + 15y 2) 8x - 12y
3) xy - x 4) 4x^2- 6x
Bài 2 : Phân tích các đa thức sau thành nhân tử :
1) 2(x + y) - 5a(x + y) 2) a^2(x - 5) - 3(x - 5)
3) 4x(a - b) + 6xy(a - b) 4) 3x(x - 1) + 5(x -1)
Bài 3 : Tính giá trị của biểu thức :
1) A = 13.87 + 13.12 + 13
2) B = (x - 3).2x + (x - 3).y tại x = 13 và y = 4
Bài 4 : Tìm x :
1) x(x - 5) - 2(x - 5) = 0 2) 3x(x - 4) - x + 4 = 0
3) x(x - 7) - 2(7 - x) = 0 4) 2x(2x + 3) - 2x - 3 = 0
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
phân tích đa thức thành nhân tử
1/(x+2)(x+3)(x+4)(x+5)-24
2/(x^2+x)^2+4(x^2+x)-12
3/(x^2+x+1)(x^2+x+2)-12
4/(a^2-4)(a^2+6a+5)
1/(x+2)(x+3)(x+4)(x+5)-24
=(x+2)(x+5)(x+3)(x+4)
=(x+2)(x-2+7)(x+3)(x-3+7)
=[(x+2)(x-2)+7x+14][(x+3)(x-3)+7x+21]
=(x2-4+7x+14)(x2-9+7x+21)
=(x2+10+7x)(x2+12+7x)
2/(x2+x)2+4(x2+x)-12
=(x2+x)2+4(x2+x)+22-16
=(x2+x+2)2-42
=(x2+x+2+4)(x2+x+2-4)
=(x2+x+6)(x2+x-2)
3/(x2+x+1)(x2+x+2)-12
=(x2+x+1)(x2+x+-1+3)-12
=(x2+x+1)(x2+x+-1)+3(x2+x+1)-12
=(x2+x)-1+3(x2+x)+3-12
=(x2+x)(x2+x+3)-10
làm đến đây thì mk bí, bạn giúp suy nghĩ nốt nha
4/nó là nhân tử sẵn rồi mà
\(3/\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
\(=\left(x^2+x+1\right)\left(x^2+x+1+1\right)-12\)
\(=\left(x^2+x+1\right)^2+x^2+x+1-12\)
\(=\left(x^2+x+1\right)^2+4\left(x^2+x+1\right)-3\left(x^2+x+1\right)-12\)
\(=\left(x^2+x+1\right)\left(x^2+x+1+4\right)-3\left(x^2+x+1+4\right)\)
\(=\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)