2n+9 và n+5 là số nguyên tố cùng nhau .
giúp mình giải bài này với
cho n thuộc số tự nhiên .Chứng minh :
a , 6n+7 và 2n+2 là 2 số nguyên tố cùng nhau
b. 6n+7 và 2n+1 là nguyên tố cùng nhau
CÁC BẠN GIẢI BÀI TẬP NÀY GIÚP MÌNH VỚI ...THANK YOU CÁC BẠN YÊU !!!
chứng minh rằng n+3 và 2n+5 là 2 số nguyên tố cùng nhau
giải ra rõ ràng giúp mình nha
goi UCLN(n+3,2n+5)=d
=>n+3 chia hết cho d
2n+5 chia hết cho d
=>2n+6 chia hết cho d
=>2n+5 chia hết cho d
=>(2n+6)-(2n+5) chia hết cho d
=>1 chia hết cho d.
mà 1 chia hết cho 1
=>d=1
=>UCLN(2n+5,n+3)=1
=> n+3 và 2n+5 là 2 số nguyên tố cùng nhau
vay....
Gọi d là USC (n+3; 2n+5) => (n+3):d và (2n+5):d <=>(2n+6):d và (2n+5):d <=> [(2n+6)-(2n+5)]:d <=> (2n+6-2n-5):d <=>1:d
=> ƯCLN của 2 số đó là 1 => Chúng là số nguyên tố cùng nhau
Các bạn giúp mình bài toán nâng cao này nha
a)Cho n là số tự nhiên. Chứng tỏ rằng 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.
b)Cho n là số nguyên tố lớn hơn 3 . Hỏi n^2 + 2018 là số nguyên tố hay hợp số?Vì sao?
Bạn nào trả lời đúng nhất mình sẽ cho 1 tick
Mấy bài này khó quá,bạn nào giải được mình xin cảm ơn nha :
Bài 1 : Cho a là số tự nhiên lẻ, b là một số tự nhiên. Chứng minh rằng các số:
a) a và ab+4 là 2 số nguyên tố cùng nhau
b)Tìm n để n+2 và 3n+11 là 2 số nguyên tố cùng nhau (n là số tự nhiên)
Bài 2: Chứng minh rằng : S=1+3+5+.........+ (2n-1) (n thuộc N*) là số chính phương .
1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d \(\in\) { 2; 4 }. (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\).
Vì vậy d = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.
Số các số hạng của S là: \(\frac{\left(2n-1-1\right)}{2}+1=n-1+1=n\).
S = 1 + 3 + 5 + ........ (2n - 1)
\(=\frac{\left(2n-1+1\right).n}{2}=n.n=n^2\).
Suy ra S là một số chính phương.
Chứng minh rằng với n thuộc N thì :
a) n +2 và n+3 là hai số nguyên tố cùng nhau
b)2n +3 và 3n+5 là hai số nguyên tố cùng nhau.
Mọi người giúp mình với nha.Mình cần gấp lắm á :)))))
mk chắc chắn 100% là mk ko bt
a) Gọi \(\:ƯCLN\) của \(n+2;n+3\) là d \(\Rightarrow n+2⋮d;n+3⋮d\)
\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1;-1\)
\(\Rightarrow n+2;n+3NTCN\)
b) Gọi \(\:ƯCLN\) \(2n+3;3n+5\) là d \(\Rightarrow2n+3⋮d;3n+5⋮d\)
\(\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\) và \(2\left(3n+5\right)⋮d\Rightarrow6n+10⋮d\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow2n+3;3n+5NTCN\)
he nhô mọi người.
Giải giúp mình bài này .Hơi nhanh xíu nha mình cần gấp
a)Tổng ba số nguyên tố bằng 132.Tìm số nguyên tố nhỏ nhất
b) Tìm số nguyên tố p để p + 10 và p +20 là nguyên tố
Cho n là số tự nhiên.Chứng minh 2n + 3 và n+1 là 2 số nguyên tố cùng nhau
Giải giúp mình đi mình tích cho
Chứng tỏ rằng với mọi số tự nhiên n thì các số sau là nguyên tố cùng nhau:
a,3n+4 và 3n+7
b,2n+3 và 4n+8
c,n và n+1
d,2n+5 và 4n+12
e,2n+3 và 3n+5
Giúp mình với ạ,mình đang cần gấp!!!
Mình mẫu đầu với cuối nhé:
a) Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\in\left\{1,3\right\}\)
Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)
Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.
e) \(ƯCLN\left(2n+3,3n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.
a) Gọi \(d\inƯC\left(n+1;2n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow2n+2-2n-3⋮d\)
\(\Leftrightarrow-1⋮d\)
\(\Leftrightarrow d\inƯ\left(-1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯC\left(n+1;2n+3\right)=\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(n+1;2n+3\right)=1\)
hay n+1 và 2n+3 là cặp số nguyên tố cùng nhau(đpcm)
Các bạn giải giúp mình câu này nhé:
Cho a,b thuộc N* là hai số nguyên tố cùng nhau. Chứng minh rằng a.b và a+b là hai số nguyên tố cùng nhau.