cho hình thoi ABCD, O là giao điểm 2 đường chéo. Các tia phân giác của 4 góc đỉnh O cắt các cạnh AB, BC, CD, DA theo thứ tự ở E, F, G, H Chứng minh EFGH là hình vuông
cho hình thoi ABCD , O là giao điểm 2 đường chéo . các tia phân giác của 4 góc đỉnh O cát các cạnh AB,BC,CD,DA theo thứ tự ở E,F,G,H . Chứng minh rằng EFGH là hình vuông.
Cho hình thoi ABCD ;O là giao điểm của 2 đường chéo. Các tia phân giác của 4 góc đỉnh O cắt các cạnh AB,BC,CD,DA theo thứ tự ở E,F,G,H.
CMR: EFGH là hình vuông
cho hình thoi ABCD, O là giao điểm 2 đường chéo. Các tia phân giác của 4 góc đỉnh O cắt các cạnh AB, BC, CD, DA theo thứ tự ở E, F, G, H Chứng minh ÈGH là hình vuông
cho hình thoi ABCD, O là giao điểm hai đường chéo. Các tia phân giác của bốn góc đỉnh O cắt các cạnh AB, BC, CD, DA theo thứ tự ở E, F, G, H. CHứng minh rằng EFGH là hình vuông
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Các tia phân giác của bốn góc vuông có đỉnh O cắt các cạnh AB, BC, CD, DA theo thứ tự ở E, F, G, H. Tứ giác EFGH là hình gì ?
Ta có: ∠ (AOB) và ∠ (COD) đối đỉnh nên E, O, G thẳng hàng
∠ (BOC) và ∠ (AOD) đối đỉnh nên F, O, H thẳng hàng
Xét ∆ BEO và ∆ BFO:
∠ (EBO) = ∠ (FBO) (tính chất hình thoi)
OB cạnh chung
∠ (EOB) = ∠ (FOB) = 45 0 (gt)
Do đó: ∆ BEO = ∆ BFO (g.c.g)
⇒ OE = OF (1)
Xét ∆ BEO và ∆ DGO:
∠ (EBO) = ∠ (GDO) (so le trong)
OB = OD(tính chất hình thoi)
∠ (EOB) = ∠ (GOD) (đối đỉnh)
Do đó: ∆ BEO = ∆ DGO (g.c.g)
⇒ OE = OG (2)
Xét ∆ AEO và ∆ AHO:
∠ (EAO) = ∠ (HAO) (tính chất hình thoi)
OA cạnh chung
∠ (EOA) = ∠ (HOA) = 45 0 (gt)
Do đó: ∆ AEO = ∆ AHO (g.c.g)
⇒ OE = OH (3)
Từ (1), (2) và (3) suy ra: OE = OF = OG = OH hay EG = FH
nên tứ giác EFGH là hình chữ nhật (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường và bằng nhau)
OE ⊥ OF (tính chất tia phân giác của hai góc kề bù)
hay EG ⊥ FH
Vậy hình chữ nhật EFGH là hình vuông.
Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Các tia phân giác của bốn góc vuông có đỉnh O cắt các cạnh AB, BC, CD, DA theo thứ tự ở E, F, G, H. Tứ giác EFGH là hình gì ?
cho hình thoi ABCD, O là giao điểm 2 đường chéo. Các tia phân giác của 4 góc đỉnh O cắt các cạnh AB, BC, CD, DA theo thứ tự ở E, F, G, H Chứng minh EFGH là hình vuông
Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Gọi E, F, G, H theo thứ tự là chân Các đường vuông góc kẻ từ O đến AB, BC, CD, DA. Tứ giác EFGH là hình gì? Vì sao?
Ta có: AB // CD (gt)
OE ⊥ AB (gt)
⇒ OE ⊥CD
OG ⊥CD(gt)
Suy ra OE trùng với OG nên ba điểm O,E,G thẳng hàng.
BC // AD (gt)
OF ⊥ BC (gt)
⇒ OF ⊥ AD
OH ⊥ AD (gt)
Suy ra OF trùng với OH nên ba điểm O,H,F thẳng hàng.
Vì AC và BD là đường phân giác các góc của hình thoi nên:
OE = OF ( t/chất tia phân giác) (1)
OE = OH ( t/chất tia phân giác) (2)
OH = OG ( t/chất tia phân giác) (3)
Tứ giác EFGH có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường nên nó là hình chữ nhật.
Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Gọi E, F, G, H theo thứ tự là chân Các đường vuông góc kẻ từ O đến AB, BC, CD, DA. Tứ giác EFGH là hình gì? Vì sao?
ABCD là hình thoi
=>AC vuông góc với BD tại trung điểm của mỗi đường
=>AC\(\perp\)BD tại O và O là trung điểm chung của AC và BD
Ta có:ABCD là hình thoi
=>AB//CD và AD//BC và AB=BC=CD=DA
Xét ΔEBO vuông tại E và ΔGDO vuông tại G có
BO=DO
\(\widehat{EBO}=\widehat{GDO}\)
Do đó: ΔEBO=ΔGDO
=>EO=GO
Ta có: ΔEBO=ΔGDO
=>\(\widehat{EOB}=\widehat{GOD}\)
mà \(\widehat{GOD}+\widehat{GOB}=180^0\)(hai góc kề bù)
nên \(\widehat{EOB}+\widehat{GOB}=180^0\)
=>E,O,G thẳng hàng
mà OE=OG
nên O là trung điểm của EG
Xét ΔOHD vuông tại H và ΔOFB vuông tại F có
OD=OB
\(\widehat{ODH}=\widehat{OBF}\)(hai góc so le trong, AD//BC)
Do đó: ΔOHD=ΔOFB
=>OH=OF
Ta có; ΔOHD=ΔOFB
=>\(\widehat{HOD}=\widehat{FOB}\)
mà \(\widehat{FOB}+\widehat{FOD}=180^0\)
nên \(\widehat{HOD}+\widehat{FOD}=180^0\)
=>H,O,F thẳng hàng
mà OH=OF
nên O là trung điểm của HF
ABCD là hình thoi
=>AC là phân giác của góc BAD
=>\(\widehat{BAC}=\widehat{DAC}\)
Xét ΔAEO vuông tại E và ΔAHO vuông tại H có
AO chung
\(\widehat{EAO}=\widehat{HAO}\)
Do đó: ΔAOE=ΔAOH
=>OH=OE
mà \(OH=\dfrac{HF}{2};OE=\dfrac{EG}{2}\)
nên HF=EG
Xét tứ giác EFGH có
O là trung điểm chung của EF và GH
=>EFGH là hình bình hành
Hình bình hành EFGH có HF=EG
nên EFGH là hình chữ nhật