Cho \(A=1 +\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2^{2023}-1}\) CMR: \(A>\dfrac{2023}{2}\)
cho \(A=\)\(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2^{2023}-1}\). CMR \(A\)\(< \dfrac{2023}{2}\)
Cho \(A=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2^{2023}-1}\) CMR: \(A>\dfrac{2023}{2}\)
Cho S=\(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+\dfrac{4}{4^4}+...+\dfrac{2023}{4^{2023}}\). Chứng minh S < \(\dfrac{1}{2}\)
=> 4S = 1 + 2/4 + 3/4^2 +...+ 2023/4^2022
=> 4S-S = 1 + (2/4-1/4) + (3/4^2 - 2/4^2) +...+ (2023/4^2022 - 2022/4^2022) - 2023/4^2023
=> 3S = 1 + 1/4 + 1/4^2 +...+ 1/4^2022 - 2023/4^2023
=> 12S = 4 + 1 + 1/4 +... + 1/4^2021 - 2023/4^2022
=> 12S - 3S = 4 + (1-1) + (1/4-1/4) +... + (1/4^2021 - 1/4^2021) - 1/4^2022 - 2023/4^2022 + 2023/4^2023
=> 9S = 4 - 1/4^2022 - 2023/4^2022 + 2023/4^2023
= 4- 2024/4^2022 + 2023/4^2023
Do 2024/4^2022 > 2024/4^2023 > 2023/4^2023 nên - 2024/4^2022 + 2023/4^2023 < 0
=> 9S < 4 < 9/2
=> S < 1/2 (đpcm)
Cho S=1+3+3^2+....+3^2023
Chứng tỏ S chia hết cho 4
CHo S=\(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+\dfrac{4}{4^4}+...+\dfrac{2023}{4^{2023}}\). Chứng minh S < \(\dfrac{1}{2}\)
Ta có S = \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2023}{4^{2023}}\)
4S = \(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2023}{4^{2022}}\)
4S - S = ( \(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2023}{4^{2022}}\) ) - ( \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2023}{4^{2023}}\))
3S = 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}-\dfrac{2023}{4^{2023}}\)
Đặt A = 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}\)
4A = 4 + 1 + \(\dfrac{1}{4}+...+\dfrac{1}{4^{2021}}\)
4A - A = ( 4 + 1 + \(\dfrac{1}{4}+...+\dfrac{1}{4^{2021}}\)) - ( 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}\))
3A = 4 - \(\dfrac{1}{4^{2022}}\)
A = ( 4 - \(\dfrac{1}{4^{2022}}\)) : 3 = \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\)
⇒ 3S = \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\) - \(\dfrac{2023}{4^{2023}}\)
S = ( \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\) - \(\dfrac{2023}{4^{2023}}\)) : 3 = \(\dfrac{4}{9}-\dfrac{1}{4^{2022}\cdot3^2}-\dfrac{1}{4^{2023}\cdot3}< \dfrac{4}{9}< \dfrac{1}{2}\)
Vậy S < \(\dfrac{1}{2}\)
A = \(\dfrac{1}{3}\)-\(\dfrac{2}{^{ }3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+...+\(\dfrac{2023}{3^{2023}}\)-\(\dfrac{2024}{3^{2024}}\) so sánh A với \(\dfrac{3}{16}\)
Rút gọn biểu thức:
A=\(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2023}}\)
Lời giải:
$A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2023}}$
$2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2022}}$
$2A-A=2-\frac{1}{2^{2023}}$
$A=2-\frac{1}{2^{2023}}$
cho x,y,z là các số thực khác 0 thỏa mãn
\(\left\{{}\begin{matrix}\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xyz}=1\\x+y+z=1\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}>0\end{matrix}\right.\)
tính P=\(x^{2023}+y^{2023}+z^{2023}\)
Ta có \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xyz}=1\)
\(\Leftrightarrow\dfrac{\left(yz\right)^2+\left(xz\right)^2+\left(xy\right)^2+2xyz}{\left(xyz\right)^2}=1\)
<=> (xy)2 + (yz)2 + (zx)2 + 2xyz = (xyz)2
<=> (xy)2 + (yz)2 + (xz)2 + 2xyz(x + y + z) = (xyz)2
<=> (xy + yz + zx)2 = (xyz)2
<=> \(\left[{}\begin{matrix}xy+yz+zx=xyz\\xy+yz+zx=-xyz\end{matrix}\right.\)
+) Khi xy + yz + zx = -xyz
=> \(\dfrac{xy+yz+zx}{xyz}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=-1< 0\left(\text{loại}\right)\)
=> xy + yz + zx = xyz
<=> \(xyz\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=xyz\Leftrightarrow xyz\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-1\right)=0\)
<=> \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
<=> \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
<=> \(\dfrac{x+y}{xy}=\dfrac{-\left(x+y\right)}{\left(x+y+z\right)z}\)
<=> \(\left(x+y\right)\left(\dfrac{1}{xz+yz+z^2}+\dfrac{1}{xy}\right)=0\)
<=> \(\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(zx+yz+z^2\right)xy}=0\)
<=> \(\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
Khi x = -y => y = 1 => P = 1
Tương tự y = -z ; z = -x được P = 1
Vậy P = 1
So sánh A và B
A=\(\dfrac{1}{3^1}\) + \(\dfrac{1}{3^2}\)+ \(\dfrac{1}{3^3}\)+...+\(\dfrac{1}{3^{2023}}\)
B=\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{12}\)
\(A=\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\)
\(A=\dfrac{1}{3}.\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\right)\)
\(\Rightarrow3A=3.\dfrac{1}{3}.\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\right)\)
\(\Rightarrow3A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\)
\(\Rightarrow3A-A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...\dfrac{1}{3^{2022}}-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\right)\)
\(\Rightarrow2A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...\dfrac{1}{3^{2022}}-\dfrac{1}{3^1}-\dfrac{1}{3^2}-\dfrac{1}{3^3}-...\dfrac{1}{3^{2022}}-\dfrac{1}{3^{2023}}\)
\(\Rightarrow2A=1-\dfrac{1}{3^{2023}}\)
\(\Rightarrow A=\dfrac{1}{2}\left(1-\dfrac{1}{3^{2023}}\right)\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2}.\dfrac{1}{3^{2023}}< \dfrac{1}{2}\)
\(B=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{12}=\dfrac{4+3+1}{12}=\dfrac{8}{12}=\dfrac{2}{3}\)
mà \(\dfrac{2}{3}>\dfrac{1}{2}\) \(\left(\dfrac{2}{3}=\dfrac{4}{6}>\dfrac{1}{2}=\dfrac{3}{6}\right)\)
\(\Rightarrow A< B\)
A = \(\dfrac{1}{3}\)+ \(\dfrac{1}{3^2}\)+ \(\dfrac{1}{3^3}\)+............+\(\dfrac{1}{3^{2023}}\)
3A = 1+ \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+\(\dfrac{1}{3^{2022}}\)
3A - A = 1 - \(\dfrac{1}{3^{2023}}\)
2A = 1 - \(\dfrac{1}{3^{2023}}\) < 1
B = \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\)+ \(\dfrac{1}{12}\)
B = \(\dfrac{4}{12}\) + \(\dfrac{3}{12}\) + \(\dfrac{1}{12}\)
B = \(\dfrac{8}{12}\)
B = \(\dfrac{2}{3}\) ⇒ 2B = \(\dfrac{4}{3}\) > 1
2A < 2B ⇒ A < B
Cho \(A=\dfrac{2}{3}+\dfrac{2}{3^2}+\dfrac{2}{3^3}+....+\dfrac{2}{3^{2023}}\) . Chứng mình rằng \(A< 1\)
Giúp mình với
\(A=\dfrac{2}{3}+\dfrac{2}{3^2}+\dfrac{2}{3^3}+....+\dfrac{2}{3^{2023}}\)
\(3A=2+\dfrac{2}{3}+\dfrac{2}{3^2}+....+\dfrac{2}{3^{2022}}\)
\(3A-A=\left(2+\dfrac{2}{3}+\dfrac{2}{3^2}+...+\dfrac{2}{3^{2022}}\right)-\left(\dfrac{2}{3}+\dfrac{2}{3^2}+....+\dfrac{2}{3^{2023}}\right)\)
\(2A=2-\dfrac{2}{3^{2023}}\)
\(A=\left(2-\dfrac{2}{3^{2023}}\right)\times\dfrac{1}{2}\)
\(A=2\times\dfrac{1}{2}-\dfrac{2}{3^{2023}}\times\dfrac{1}{2}\)
\(A=1-\dfrac{1}{3^{2023}}\)
=> \(A< 1\left(đpcm\right)\)