Tìm x:\(4^x\)+ \(4^{x+3}\)= 4160
Tìm x :
\(4^x+4^{x+3}=4160\)
4x+4x+3=4160
=>4x+4x.43=4160
=>4x(1+64)=4160
=>65.4x=4160
=>4x=64
=>x=3
Vậy x=3
\(4^x+4^{x+3}=4160\)
\(\Rightarrow4^x+4^x.4^3=4160\)
\(\Rightarrow4^x.\left(1+4^3\right)=4160\)
\(\Rightarrow4^x.65=4160\)
\(\Rightarrow4^x=64\)
\(\Rightarrow x=3\)
\(4^x+4^x.4^3=4160\)
\(\Leftrightarrow4^x\left(1+64\right)=4160\)
\(\Leftrightarrow4^x=4160:65\)
\(\Leftrightarrow4^x=64=4^3\)
\(\Leftrightarrow x=3\)
Tìm x , biết :
4x + 4x + 3 = 4160
\(4^x+4^{x+3}=4160\)
\(4^x\times\left(1+4^3\right)=4160\)
\(4^x\times\left(1+64\right)=4160\)
\(4^x\times65=4160\)
\(4^x=\frac{4160}{65}\)
\(4^x=64\)
\(4^x=4^3\)
\(x=3\)
\(4^x+4^{x+3}=4160\)
\(\Rightarrow4^x+4^x.4^3=4160\)
\(\Rightarrow4^x.\left(1+4^3\right)=4160\)
\(\Rightarrow4^x.65=4160\)
\(\Rightarrow4^x=64\)
\(\Rightarrow4^x=4^3\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
4 x+3 +4x =4160
Tìm x
\(4^{x+3}+4^x=4160\)
\(\Rightarrow4^x.4^3+4^x=4160\)
\(\Rightarrow4^x.\left(4^3+1\right)=4160\)
\(\Rightarrow4^x.65=4160\)
\(\Rightarrow4^x=4160:65\)
\(\Rightarrow4^x=64\)
\(\Rightarrow4^x=4^3\)
\(\Rightarrow x=3\)
\(4^{x+3}+4^x=4160\)
\(\left(4^x\cdot4^3\right)+4^x=4160\)
\(4^x\cdot\left(4^3+1\right)=4160\)
\(4^x\cdot\left(64+1\right)=4160\)
\(4^x\cdot65=4160\)
\(4^x=4160:65\)
\(4^x=64\)
\(\Rightarrow4^x=4^3\)
\(\Rightarrow x=3\)
Thưa toàn thể quý vị, chào mừng các bạn đến đây
\(4^{x+3}+4^x=4160\)
\(4^x\left(4^3+1\right)=4160\)
\(4^x.65=4160\)
\(4^x=4160:65\)
\(4^x=64\)
=> x = 3
tìm x, biết4 mu x + 4 mux+3 = 4160
\(4^x+4^{x+3}=4160\)
\(\Leftrightarrow4^x.\left(1+4^3\right)=4160\)
\(\Leftrightarrow4^x.65=4160\)
\(\Leftrightarrow4^x=4160:65=64\)
\(\Rightarrow x=3\)
Tìm x , biết:
\(4^x+4^{x+3}=4160\)
4x+4x+3=4160
\(\Rightarrow\)4x+4x.43=4160
\(\Rightarrow\)4x.(1+43)=4160
\(\Rightarrow\)4x.65=4160
\(\Rightarrow\)4x=4160:65
\(\Rightarrow\)4x=64
\(\Rightarrow\)4x=43
\(\Rightarrow\)x=3
\(4^x+4^{x+3}=4160\)
\(4^x\left(1+4^3\right)=4160\)
\(\Rightarrow4^x\cdot65=4160\)
\(\Rightarrow4^x=64\)
\(\Rightarrow4^x=4^3\)
\(\Rightarrow x=3\)
Ta làm theo kiểu đặt nhân tử chung nha :
\(4^x+4^{x+3}=4160\)
\(=>4^x\left(1+4^3\right)=4160\)
\(=>4^x.65=4160\)
\(=>4^x=64\)
\(=>x=3\)
Tìm x c z:
4x + 4x+3 = 4160
ta có :
4160 chia liên tục cho 4 được 9 lần
mà 9 - 3 = 6 . vậy 2 lần x = 6
x = 6 : 2 = 3
nhé !
dễ
Bạn tự suy nghĩ cách làm nhé !
\(4^x+4^{x+3}=4160\)
\(x=3\)
Tìm x thuộc N:
a) 4^x+a^x+3 = 4160
b) 2^x-1+5.2^x-2 = 7/32
2/3.3^x+1-7.3^x=-405
4^x+4^x+3=4160
tìm số tự nhiên n biết:
a) 4x+4x+3=4160
b) 2x+1+5.xx-2=7/32