3^x+3^x+1+3^x+2+.....+3^x+2017=3^2020-9:2
Bài 1:a)Tính giá trị biểu thức :
A = 3^100 . (-2) + 3^101 / (-3)^101 - 3^100 b) 1/50 + 1/51 + ... + 1/99
b) Tìm x,biết 3^x + 3^x+1 3^x+2 + ... + 3^2017= 3^2020 - 9 / 2
ai nhanh mk K ạ.
A = \(\dfrac{3^{100}.\left(-2\right)+3^{101}}{\left(-3\right)^{101}-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2\right)+3^{100}.3}{\left(-3\right)^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2+3\right)}{3^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.1}{3^{100}.\left(-3-1\right)}\)
A = \(\dfrac{3^{100}}{3^{100}}\) . \(\dfrac{1}{-4}\)
A = - \(\dfrac{1}{4}\)
X+1/2020+x+2/2019+x+3/2018+x+4/2017+4=0
\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}+\dfrac{x+3}{2018}+\dfrac{x+4}{2017}+4=0\)
⇔ \(\dfrac{x+1}{2020}+1+\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1+\dfrac{x+4}{2017}+1=0\)
\(\Leftrightarrow\) \(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}=0\)
⇔ \(\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)=0\)
\(Do\) \(\left(\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)\ne0\)
⇒ \(x+2021=0\)
⇔ \(x=-2021\)
\(Vậy\) \(x=-2021\)
x+1/2020 + x+2/2019 + x+3/2018 + x+4/2017
(x-2)3(2020x-1010)2020(3x-9)10=?
A.x=2; x=12; x=3 C.x=2; x=12; x=0
B.x=2; x=3 D.x=2; x=20201010; x=3
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\right).x+2017=\frac{2018}{1}+\frac{2018}{2}+\frac{2020}{3}\). Tìm x
2/5×(x-1)+1=3/5
(2/7×x+1)×(3-1/2×x)=0
5/4×x+1=1/2x+3/4
X-2020/10^2+x-202^0/10^3+x-2020/10^4=0
0x+1/2018+x+2/2017=x+3/2016-x+4/2015
2015
Nhanh tk nha
Hello bạn, mk cx tên Mai nek.
\(\frac{2}{5}.\left(x-1\right)+1=\frac{3}{5}\)
\(\Rightarrow\frac{2}{5}\left(x+1\right)=\frac{3}{5}-1\)
\(\Rightarrow\frac{2}{5}\left(x+1\right)=-\frac{2}{5}\)
\(\Rightarrow x+1=-\frac{2}{5}:\frac{2}{5}\)
\(\Rightarrow x+1=-1\)
\(\Rightarrow x=-1-1\)
\(\Rightarrow x=-2\)
\(\left(\frac{2}{7}\times x+1\right)\times\left(3-\frac{1}{2}\times x\right)=0\)
\(TH1:\frac{2}{7}\times x+1=0\)
\(\frac{2}{7}\times x=-1\)
\(x=-\frac{2}{7}\)
\(TH2:3-\frac{1}{2}\times x=0\)
\(\frac{1}{2}\times x=3\)
\(x=\frac{3}{2}\)
Vậy \(x\in\left\{\frac{3}{2};-\frac{2}{7}\right\}\)
\(\frac{5}{4}\times x+1=\frac{1}{2}x+\frac{3}{4}\)
\(\frac{5}{4}x-\frac{1}{2}x=\frac{3}{4}-1\)
\(\left(\frac{5}{4}-\frac{1}{2}\right)x=-\frac{1}{4}\)
\(\frac{3}{4}x=-\frac{1}{4}\)
\(x=-\frac{1}{4}\times\frac{4}{3}\)
\(x=-\frac{1}{3}\)
Vậy \(x\in\left\{-\frac{1}{3}\right\}\)
Tìm X biết:
X+1/2020 + X+2/2019 +X+3/2018 +X+4/2017 =-4
\(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}+\frac{x+4}{2017}=-4\)
=> \(\left[\frac{x+1}{2020}+1\right]+\left[\frac{x+2}{2019}+1\right]+\left[\frac{x+3}{2018}+1\right]+\left[\frac{x+4}{2017}+1\right]=-4\)
=> \(\left[\frac{x+1}{2020}+\frac{2020}{2020}\right]+\left[\frac{x+2}{2019}+\frac{2019}{2019}\right]+\left[\frac{x+3}{2018}+\frac{2018}{2018}\right]+\left[\frac{x+4}{2017}+\frac{2017}{2017}\right]=-4\)
=> \(\frac{x+2021}{2020}+\frac{x+2021}{2019}+\frac{x+2021}{2018}+\frac{x+2021}{2017}=-4\)
=> \(\left[x+2021\right]\left[\frac{1}{2000}+\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}\right]=-4\)
Do \(\frac{1}{2020}>\frac{1}{2019}>\frac{1}{2018}>\frac{1}{2017}\)nên \(\frac{1}{2000}+\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}\ne0\)
Do đó : x + 2021 = -4 => x = -4 - 2021 = -2025
Tìm x thuộc Q:
a) 2|x-1/2|-|x+3|=0
b) |2-x|+|x+3|=1
c) 2016.|x-2017|+2018.|2019-x|=2020
Làm giúp, ai giãi em với
tìm x e Q
a) \(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}=\dfrac{x+1}{6}\)
b) \(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}=\dfrac{x+3}{2018}+\dfrac{x+4}{2017}\)
c) \(\dfrac{x+2}{327}+\dfrac{x+3}{326}+\dfrac{x+4}{325}+\dfrac{x+5}{324}+\dfrac{x+349}{5}=0\)
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}=\dfrac{x+1}{6}\)
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)
\(\left(x+1\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)
\(\)vì \(\dfrac{1}{3}>\dfrac{1}{6};\dfrac{1}{4}>\dfrac{1}{6};\dfrac{1}{5}>\dfrac{1}{6}=>\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}>0\)
\(=>x+1=0\)
\(=>x=-1\)
b,
\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}=\dfrac{x+3}{2018}+\dfrac{x+4}{2017}\)
\(\left(\dfrac{x+1}{2020}+1\right)+\left(\dfrac{x+2}{2019}+1\right)=\left(\dfrac{x+3}{2018}+1\right)+\left(\dfrac{x+4}{2017}+1\right)\)
\(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}=\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}\)
\(=>\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}-\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}=0\)
\(=>\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}\right)=0\)
Vì \(\dfrac{1}{2020}< \dfrac{1}{2018};\dfrac{1}{2019}< \dfrac{1}{2017}=>\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}< 0\)
\(=>x+2021=0\)
\(=>x=-2021\)
c,
\(\dfrac{x+2}{327}+\dfrac{x+3}{326}+\dfrac{x+4}{325}+\dfrac{x+5}{324}+\dfrac{x+349}{5}=0\)
\(\left(\dfrac{x+2}{327}+1\right)+\left(\dfrac{x+3}{326}+1\right)+\left(\dfrac{x+4}{325}+1\right)+\left(\dfrac{x+5}{324}+1\right)+\left(\dfrac{x+349}{5}-4\right)=0\)
\(\dfrac{x+329}{327}+\dfrac{x+329}{326}+\dfrac{x+329}{325}+\dfrac{x+329}{324}+\dfrac{x+329}{5}=0\)
\(=>\left(x+329\right)\left(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}\right)=0\)
Vì \(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}>0\)
\(=>x+329=0\)
\(=>x=-329\)