Lời giải:
Có:
$A=3^x+3^{x+1}+3^{x+2}+....+3^{x+2017}=3^x(1+3+3^2+3^3+....+3^{2017})$
$3A=3^x(3+3^2+3^3+...+3^{2018})$
$\Rightarrow 3A-A=3^x[(3+3^2+3^3+...+3^{2018}) -(1+3+3^2+....+3^{2017})]$
$\Rightarrow 2A=3^x(3^{2018}-1)=3^{2020}-9$
$\Rightarrow 3^x(3^{2018}-1=3^2(3^{2018}-1)$
$\Rightarrow 3^x=3^2$
$\Rightarrow x=2$