Help !
Tính hợp lí :
A= 1/1.6 - 1/6.11 - 1/11.16 -1/16. 21 -...- 1/46.51
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+.........+\frac{1}{46.51}\)
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{46.51}\)
\(=\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{46.51}\right)\)
\(=\frac{1}{5}.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{46}-\frac{1}{51}\right)\)
\(=\frac{1}{5}.\left(1-\frac{1}{51}\right)\)
\(=\frac{1}{5}.\left(\frac{51}{51}-\frac{1}{51}\right)\)
\(=\frac{1}{5}.\frac{50}{51}\)
\(=\frac{10}{51}\)
Chúc bạn học tốt !!!
Đặt \(A=\frac{1}{1\cdot6}+\frac{1}{6\cdot11}+\frac{1}{11\cdot16}+...+\frac{1}{46\cdot51}\)
\(5A=5\left(\frac{1}{1\cdot6}+\frac{1}{6\cdot11}+\frac{1}{11\cdot16}+...+\frac{1}{46\cdot51}\right)\)
\(5A=\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+...+\frac{5}{46\cdot51}\)
\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{46}-\frac{1}{51}\)
\(5A=1-\frac{1}{51}\)
\(5A=\frac{50}{51}\Rightarrow A=\frac{50}{51}:5\Rightarrow A=\frac{10}{51}\)
Tính các tổng sau một cách hợp lý
1+6+11+16+21+26+31+36+41+46+51
52/1.6+52/6.11+52/11.16+...+52/26.31
_ (1+51)+(6+46)+(11+41)+(16+36)+(21+31)+26
= 52+52+52+52+52+26= 52 x 5+26= 286
_ 5 . ( 5 / 1.6+ 5/ 6.11+ 5/ 11.16+.... + 5/ 26.31)
=5. ( 1/1- 1/6+1/6 -1/11+ 1/11-1/16 +....+1/26-1/31)
= 5. ( 1/1 - 1/31)
= 5. 30/31= 150/31
câu a thì nguyễn thị kim phụng giải đúng rồi còn câu b mình nghĩ cậu ấy làm sai mình sẽ làm lại
b)=5.(5/1.6+5/6.11+5/11.16+5/16.21+5/21.26+5/26.31
=5.(5/1-5/6+5/6-5/11+5/11-5/16+5/16-5/21+5/21-5/26+5/26-5/31)
=5.(5-5/31)
=5.150/31
=750/31
Tính :
E=1/1.6+1/6.11+1/11.16+...+1/496.501
Tính A= \(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+.....+\frac{1}{496.501}\)
\(A=\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+....+\frac{1}{496}-\frac{1}{501}\right):5\)
\(A=\left(1-\frac{1}{501}\right):5\)
\(A=\frac{500}{501}:5=\frac{100}{501}\)
Ta có : \(A=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{496.501}\)
\(\Rightarrow\) \(A=\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{496}-\frac{1}{501}\right) \)
\(\Rightarrow\) \(A=\frac{1}{5}\left(1-\frac{1}{501}\right)\)
\(\Rightarrow\) \(A=\frac{1}{5}.\frac{501-1}{501}=\frac{1}{5}.\frac{500}{501}\)
\(\Rightarrow\) \(A=\frac{1.500}{5.501}=\frac{20}{1.501}=\frac{20}{501}\)
Vậy \(A=\frac{20}{501}\)
mk nhầm 1 chút : \(A=\frac{1.100}{5.101}=\frac{100}{1.101}=\frac{100}{101}\)
Vậy \(A=\frac{100}{101}\) chứ ko phải bằng \(\frac{20}{101}\) đâu nhé mong bn thông cảm!!!!
52/1.6 + 522/6.11 + 522/11.16+ ... + 522/46.51
Ta có :
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{46.51}\)
\(=\)\(5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{46.51}\right)\)
\(=\)\(5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{46}-\frac{1}{51}\right)\)
\(=\)\(5\left(1-\frac{1}{51}\right)\)
\(=\)\(5.\frac{50}{51}\)
\(=\)\(\frac{250}{51}\)
Chúc bạn học tốt ~
\(A=\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{496.501}\)
Lời giải:
\(5A=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+....+\frac{501-496}{496.501}\)
\(=\frac{6}{1.6}-\frac{1}{1.6}+\frac{11}{6.11}-\frac{6}{6.11}+\frac{16}{11.16}-\frac{11}{11.16}+...+\frac{501}{496.501}-\frac{496}{496.501}\)
\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+....+\frac{1}{496}-\frac{1}{501}=1-\frac{1}{501}=\frac{500}{501}\)
$\Rightarrow A=\frac{100}{501}$
\(A=\dfrac{1}{5}\left(\dfrac{1}{1.6}+...+\dfrac{1}{496.501}\right)\)
\(A=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\cdot\cdot\cdot+\dfrac{1}{495}-\dfrac{1}{501}\right)\)
\(A=\dfrac{1}{5}\left(1-\dfrac{1}{501}\right)\)
\(A=\dfrac{1}{5}\cdot\dfrac{500}{501}=\dfrac{100}{501}\)
B= 1/1.6 + 1/6.11 + 1/11.16 + ... + 1/101.106
=1/5(5/1*6+5/6*11+...+5/101*106)
=1/5(1-1/6+1/6-1/11+...+1/101-1/106)
=1/5(1-1/106)
=1/5*105/106
=21/106
B=1/1.6+1/6.11+1/11.16+...+1/101.106
\(B=\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{101.106}\)
\(B=\dfrac{1}{5}.\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{101}-\dfrac{1}{106}\right)\)
\(B=\dfrac{1}{5}.\left(1-\dfrac{1}{106}\right)\)
\(B=\dfrac{1}{5}.\dfrac{105}{106}\)
\(B=\dfrac{21}{106}\)
S=1/1.6+1/6.11+1/11.16+.....+1/496.501
5S=5.(1/1.6+1/6.11+...+1/496.501)
5S=5/1.6+5/6.11+...+5/496.501
5S=1/1-1/6+1/6-1/11+...+1/496-1/501
5S=1-1/501
5S=500/501
S=500/501:5=100/501
k nhé
ta co:5S=5/1.6+5/6.11+5/11.16+...+5/496.501
=1-1/6+1/6-1/11+1/11-1/16+.....+1/496-1/501
=1-1/501=500/501
=>S=500/501:5=100/501
MK đau tien nha bn