chứng tỏ rằng số a=(102011 + 23 )/9 là số tự nhiên.
Bài 11.
a/ Chứng tỏ rằng số 111222 là tích của 2 số tự nhiên liên tiếp.
b/ Chứng tỏ rằng số 444222 là tích của 2 số tự nhiên liên tiếp.
c/ Chứng tỏ rằng số 11...122...2 là tích của 2 số tự nhiên liên tiếp.
Bài 12.Cho 9 số xếp vào 9 ô thành 1 hàng ngang,trong đó số đầu tiên là 4,số cuối cùng là 8 và tổng 3 số liền nhau bất kì bằng 17.Hãy tìm 9 số đó.
a) 111222 = 333 x 334
b) 444222 = 666 x 667
c) 11.1222...2 = 33....3 x 44.....4
nha bn
Bài 11.
a/ Chứng tỏ rằng số 111222 là tích của 2 số tự nhiên liên tiếp.
b/ Chứng tỏ rằng số 444222 là tích của 2 số tự nhiên liên tiếp.
c/ Chứng tỏ rằng số 11...122...2 là tích của 2 số tự nhiên liên tiếp.
Bài 12.Cho 9 số xếp vào 9 ô thành 1 hàng ngang,trong đó số đầu tiên là 4,số cuối cùng là 8 và tổng 3 số liền nhau bất kì bằng 17.Hãy tìm 9 số đó.
giúp mình nha các bạn.
Hình như đây là 1 bài toán lớp 7. Bạn có thể giải theo cách đặt ẩn theo những bạn đã làm ở trên nhưng hình như lớp 7 chưa có đặt ẩn thì phải.
Mình sẽ chỉ bạn phương pháp giải chi tiết theo cách lớp 7 như sau:
1) Dự đoán kết quả (tính trong đầu):
Dạng bài phân tích số, đa thức hay tính giá trị biểu thức thật ra là chứng minh đẳng thức A = B và 1 vế B đã bị giấu đi. Nếu biết cụ thể 2 vế thì chứng minh dễ hơn nhiều.
Bấm máy tính, ta có:
12 = 3.4
1122 = 33.34
111222 = 333.334
11112222 = 3333.3334
....
Có lẽ bạn đã nhận ra quy luật rồi, vậy bắt đầu chứng minh:
Ta có: 111222 = 111000 + 222 = 111.1000 + 111.2 = 111(1000 + 2) = 111(999 + 3) = 111.3(333 + 1)
=333.334 (đpcm)
Đơn giản vậy thôi nếu biết trước kết quả, đây là 1 phương pháp bổ ích bạn nên tận dụng^
Bạn xem lời giải của bạn Đức Nhật Huỳnh ở đường link dưới nhé:
Câu hỏi của Nguyễn Thị Thảo Ly - Toán lớp 6 - Học toán với OnlineMath
Chia số tự nhiên a cho 9 được số dư là 4. Chia số tự nhiên b cho 9 được số dư là 5. Chia số tự nhiên c cho 9 được số dư là 8.
a) Chứng tỏ rằng a + b chia hết cho 9
b) Tìm số dư khi chia b + c cho 9
a) Ta có: a chia 9 dư 4 => đặt a =9k+4
b chia 9 dư 5 => đặt b=9t+5
=> a+b = 9k+4+9t+5 = 9(k+t+1) chia hết cho 9
b) Ta có: c chia 9 dư 8 => đặt c=9n+8
=> b+c = 9t+5+9n+8 = 9(t+n+1) +4
=> b+c chia 9 dư 4
Câu a: vì tổng của 2 số dư của a+b=9 nên t có : a+b chia hết cho 9 và 4+5 chia hết cho 9 nên suy ra a+b chia hết cho 9 b: dư4
Bài 5: Chia số tự nhiên a cho 9 được số dư là 4. Chia số tự nhiên b cho 9 được số dư là 5. Chia số tự nhiên c cho 9 được số dư là 8.
a) Chứng tỏ rằng a + b chia hết cho 9; b) Tìm số dư khi chia b + c cho 9
a) Ta có: a chia 9 dư 4 => đặt a =9n+4
b chia 9 dư 5 => đặt b=9h+5
=> a+b = 9n+4+9h+5 = 9(n+h+1) chia hết cho 9
b) Ta có: c chia 9 dư 8 => đặt c=9m+8
=> b+c = 9h+5+9m+8 = 9(h+m+1) +4
=> b+c chia 9 dư 4
Chứng tỏ rằng số a = 10^2011+2^3/9 là số tự nhiên
=> 102011 + 8 chia hết cho 9
102011+8 = 10000..000+8 (có 2011 số 0)
102011 + 8 = 10000....0008 (có 2010 chữ số 0 )
Vì 1 + 0 + +...+0+8 = 9 nên chia hết cho 9
Vậy a chia hết cho 9 và là số tụ nhiên
1. Chứng tỏ rằng với mọi số tự nhiên n thì n2+n+1 không chia hết cho 5
2. Chứng tỏ rằng số a= 911 +1 chia hết cho cả 2 và 5
3. Chứng tỏ rằng tích n(n + 3) là số chẵn vói mọi số tự nhiên n
xa xa, các bạn sẽ thấy lũy tre như bức tuờng thành kiên cố đang bảo vệ bao quanh thôn xóm mìnhcây tre nhỏ nhắn với thân dài thẳng, được chia thành những đốt nhỏ đều nhau. Thân cây thường có màu xanh thẫm, các đốt thì có màu hơi xanh đậm hơi vàng. Cây tre không đứng riêng lẻ với nhau, mà thường tạo thành từng lũy với cây này tựa cây kia, dựa vào nhau cùng vươn lên bất chấp nắng mưa để đón lấy ánh sớm bình minh. Các nhánh tre thường không mọc trên cao mà mọc ngay gần dưới đất, chúng có rất nhiều gai gồ ghề và thường rất nhỏ. Còn lá tre thì mỏng, nhọn, to chỉ bằng nửa lá xoài mà thôi, tuy lá tre trông mảnh khảnh nhưng rất dẻo dai. Họ nhà tre có đến vài chục loại khác nhau, nhưng cùng một điểm tương đồng, đó là cùng có mầm non măng mọc thẳng. Và tre cũng có hoa đó các bạn, nhưng phải hơn 100 năm nó mới ra hoa một lần. Hoa tre mọc thành từng chùm có màu vàng nhạt. Mùi thơm của hoa tre cũng rất đặc biệt đó ạ! Cây tre có nhiều loại, mỗi loại lại mang đến cho chúng ta một công dụng riêng. Có tre to để đan lát, có tre để làm hàng thủ công. Tre còn có thể được sử dụng để làm nhà cửa, lều quán. Tre gai lại là người canh gác giúp cho cho luỹ làng ta trở nên kiên cố..Không chỉ trở thành những vật dụng đồng hành cùng người nông dân trong cuộc sống thường ngày, cuộc sống lao động, cây tre còn có vai trò rất quan trọng trong thời kháng chiến. Ở đó, “tre giữ làng, giữ nước, giữ mái nhà tranh, giữ đồng lúa chín” (Thép Mới). Trong lúc mà dân ta chưa có vũ khí hiện đại, vu khí đều sử dụng phụ thuộc cả vào thiên nhiên. Tre với tính chất dẻo dai mà cứng rắn đã trở thành một vũ khí vô cùng lợi hại của dân ta. Chúng ta ắt hẳn vẫn còn nhớ tới truyền thuyết Thánh Gióng, bẻ tre bên đường, đánh cho quân xâm lược không còn manh giáp. Hay sự kiện Ngô Quyền dùng cọc tre và lợi dụng thủy triều đánh tan quân Nam Hán trên song Bạch Đằng vào năm 938. Đó là minh chứng rất cụ thể cho vai trò to lớn của cây tre trong những trận chiến khốc liệt dành độc lập dân tộc. Có tầm quan trọng như vậy, từ lâu cây tre đã đi vào tiềm thức của người dân Việt với rất nhiều biểu tượng. Tre luôn mọc thành lũy, thành hàng chứ không bao giờ mọc một mình, đó là tinh thần đoàn kết, đồng lòng. Tre mọc thẳng, mọc cao, không bao giờ mọc nghiêng, cùng sự dẻo dai dễ sống của cây là biểu hiện rõ nhất cho sự kiên cường, bất khuất. Đó đều là những phẩm chất đáng quý của con người Việt Nam, dân tộc Việt Nam, nên mới nói, nhắc đến cây tre là nhắc đến con người Việt Nam. Tre thật đẹp, thật có ích. Tre là biểu tượng không thể phai đổi, không thể mất đi, tre già măng mọc, sẽ còn mãi đến mai sau. Dù là chiến tranh đã lùi xa, cuộc sống trở nên hiện đại hơn nhưng cây tre vẫn mãi giữ một vị trí quan trọng trong tâm hồn người Việt.
Bài 1:
a/ Chứng tỏ rằng số 111222 là tích của 2 số tự nhiên liên tiếp.
b/ Chứng tỏ rằng số 444222 là tích của 2 số tự nhiên liên tiếp.
c/ Chứng tỏ rằng số 11...122...2 là tích của 2 số tự nhiên liên tiếp.
Bài 2:
Cho 9 số xếp vào 9 ô thành 1 hàng ngang,trong đó số đầu tiên là 4,số cuối cùng là 8 và tổng 3 số liền nhau bất kì bằng 17.Hãy tìm 9 số đó.
Bài 3:
Viết liên tiếp các số tự nhiên từ 1 đến 1000 ta được số A=1234...9989991000.
a/ Chữ số 5 xuất hiện mấy lần?
b/ Chữ số 0 xuất hiện mấy lần?
Bài 4: Tính:
333...3 x 999...9 có 20 số 3; 20 số 9.
a la Dạng bài phân tích số, đa thức hay tính giá trị biểu thức thật ra là chứng minh đẳng thức A = B và 1 vế B đã bị giấu đi. Nếu biết cụ thể 2 vế thì chứng minh dễ hơn nhiều.
Bấm máy tính, ta có:
12 = 3.4
1122 = 33.34
111222 = 333.334
11112222 = 3333.3334
....
Có lẽ bạn đã nhận ra quy luật rồi, vậy bắt đầu chứng minh:
Ta có: 111222 = 111000 + 222 = 111.1000 + 111.2 = 111(1000 + 2) = 111(999 + 3) = 111.3(333 + 1)
=333.334 (đpcm)
minh nghi cac ban deu lam dung roi day
Bài 5: Chia số tự nhiên a cho 9 được số dư là 4. Chia số tự nhiên b cho 9 được số dư là 5. Chia số tự nhiên c cho 9 được số dư là 8.
a) Chứng tỏ rằng a + b chia hết cho 9
b) Tìm số dư khi chia b + c cho 9
mn bày e gấp
a) Ta có: a chia 9 dư 4 => đặt a =9k+4
b chia 9 dư 5 => đặt b=9t+5
=> a+b = 9k+4+9t+5 = 9(k+t+1) chia hết cho 9
b) Ta có: c chia 9 dư 8 => đặt c=9n+8
=> b+c = 9t+5+9n+8 = 9(t+n+1) +4
=> b+c chia 9 dư 4
\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+...+\left(1-\frac{1}{100^2}\right)\)(99 cặp)
\(=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
99 hạng tử 1 99 hạng tử
\(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)< 99 (1)
Lại có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)
Khi đó A = \(99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99-1=98\)(2)
(Vì \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)(cmt)
Từ (1)(2) => 98 < A < 99 => A không là số tự nhiên
a,chứng tỏ rằng với mọi số tự nhiên n thì số 9^2n - 1 chia hết cho 2 và 5
b, chứng tỏ rằng p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số