Cho B = { m,n }, cho A = { a ; b ; c ; d} Viết tập hợp D sao cho B\(\subset\)D\(\subset\)A
Công thức nào đúng hay cả hai công thức
a chia hết cho m và b chia hết cho thì a*b chia hết cho m*n
a chia hết cho m và b chia hết cho m thì a chia hết cho m*n [(m,n)]
phát biểu thành lời các công thức sau
m=a.b => m chia hết cho a , m chia hết cho b
m chia hết cho a=> m = a.k
m chia hết cho a ; a chia hết cho b =>m chia hết cho b
m chia hết cho a ; n chia hết cho a =>(m+n)chia hết cho a
m chia hết cho a => m.k chia hết cho a
nếu a.b chia hết cho k và \(\frac{a}{k}\)tối giản=> b chia hết cho k
nếu m chia hết cho a , m chia hết cho b,\(\frac{a}{b}\)tối giản => m chia hết cho ( a.b )
M chia hết cho , n chia hết cho b => m.n chia hết cho ( a+b )
Giúp với mọi người ơi! Mai mình phải nộp rồi
Bài 1: Cho A= 2 . 4 . 6 . 8 . 10 . 12 + 40
a) C/m A chia hết cho 8 b) C/m A chia hết cho 5 c) C/m A chia hết cho 6
Bài 2: Tìm n thuộc N sao cho
a) n + 5 chia hết cho n b) 3n + 7 chia hết cho n
c) n + 7 chia hết cho n + 3 d) 3n + 9 chia hết cho n - 1
e) 5n + 3 chia hết cho 7 - 2n
Bài 3: Cho A= 3 + 3^3 + 3^5 + ... + 3^1992
a) C/m A chia hết cho 13
b) C/m A chia hết cho 40
Câu 1: M=(-∞;5] và N=[-2;6). Tìm M∩N,giải thích Câu 2: Cho A=[-4;7], B=(-∞;-2)∪(3;+∞). Tìm A∩B, giải thích Câu 3: Cho A=(-∞;5], B=(0;+∞). Tìm A∩B, giải thích Câu 4. Cho A=(-∞;0)∪(4;+∞) và B=[-2;5]. Tìm A∩B,giải thích Câu 5: Cho M=[-4;7] và N=(-∞;2)∪(3;+∞). Tìm M∩N, giải thích Câu 6: Cho a,b,c là những số thực dương thỏa a
1. cho n thuộc z
c/m a=n^4-n^2 chia hết cho 12
2.cho n thuộc z
c/m a= n^2(n^4-1) chia hết cho 60
3.cho n thuộc z
c/m a=2n(16-n^4) chia hết cho 30
4.cho a,b thuộc z
c/m M=ab(a^4-b^4) chia hết cho 30
a chia hết cho m, b chia hết cho n , (a*b) không chia hết cho (n*m)
a=?
b=?
m=?
n=?
toán khó đấy ai mà giải được mình xin bái phục
Bài 1: Tìm n thuộc N sao cho: 4n - 5 chia hết cho 2n - 1
Bài 2:Cho A = 9n + 7/3n + 4
a) Tìm n nguyên để a nguyên
b) Tìm n nguyên để A nhỏ nhất.
Bài 3 Cho A = 10n - 3/4n -
a) Tìm n nguyên để A nguyên
b) Tìm gtln của A.
\(4n-5⋮2n-1\)
\(\Rightarrow4n-2-3⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)
\(\Rightarrow3⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(3\right)\)
\(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\left[{}\begin{matrix}2n-1=1\Rightarrow2n=2\Rightarrow n=1\\2n-1=-1\Rightarrow2n=0\Rightarrow n=0\\2n-1=3\Rightarrow2n=4\Rightarrow n=2\\2n-1=-3\Rightarrow2n=-2\Rightarrow n=-1\end{matrix}\right.\)
2) \(A=\dfrac{9n+7}{3n+4}=\dfrac{9n+12-5}{3n+4}=\dfrac{9n+12}{3n+4}-\dfrac{5}{3n+4}=\dfrac{3\left(3n+4\right)}{3n+4}-\dfrac{5}{3n+4}=3-\dfrac{5}{3n+4}\)
\(\Rightarrow5⋮3n+4\)
\(\Rightarrow3n+4\inƯ\left(5\right)\)
\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(MIN_A\Rightarrow MAX_{3n+4}\)
\(\Rightarrow3n+4=-1\Rightarrow3n=-5\Rightarrow n=-\dfrac{5}{3}\)
Tương tự
\(\Rightarrow\left[{}\begin{matrix}3n+4=1\Rightarrow3n=-3\Rightarrow n=-1\\3n+4=-1\Rightarrow3n=-5\Rightarrow n=-\dfrac{5}{3}\\3n+4=5\Rightarrow3n=1\Rightarrow n=\dfrac{1}{3}\\3n+4=-5\Rightarrow3n=-9\Rightarrow n=-3\end{matrix}\right.\)
b) \(MIN_A\Rightarrow A\in Z^-\Rightarrow3n+4\in Z^-\)
Cho a > b và m < n, hãy đặt dấu >, < vào ô vuông cho thích hợp: a(m – n) b(m – n)
Cho a > b và m < n, hãy đặt dấu >, < vào ô vuông cho thích hợp: m(a – b) n(a – b)
a, Cho ( a,b) = 1 . Chung minh rang (a.b, a+b)=1
b, Cho (a,b)= 1. Tim UCLN (11a+2b , 18a +5b)
C,, Cho A = m+n ; B=m^2+n^2.Trong do m va n la cac so tu nhien nguyen to cung nhau. Tim UCLN (A,B)
d, Tim cac so tu nhien n sao cho n^3 - n^2 + n-1la so nguyen to