a) 4x ( x - 2018 ) - x + 2018 = 0
b) ( x + 1 ) 2 = x + 1
tìm GTNN
A=(x^2 -3x+1) . (x^2-3x-2) +2018
B=(x-1)(x+5)(x^2+4x+5)=2018
C=15-4x^2+4x
D=(x-1)(x-3)=21
tìm GTNN
A=(x^2 -3x+1) . (x^2-3x-2) +2018
B=(x-1)(x+5)(x^2+4x+5)=2018
C=15-4x^2+4x
D=(x-1)(x-3)=21
\(C=-\left(4x^2-4x-15\right)\)
\(=-\left(4x^2-4x+1-16\right)\)
\(=-\left(2x-1\right)^2+16< =16\)
Dấu = xảy ra khi x=1/2
\(D=x^2-4x+3+21\)
\(=x^2-4x+4+20=\left(x-2\right)^2+20>=20\)
Dấu '=' xảy ra khi x=2
a)(4x-3y)2018+(x2+y2-25)2018=0
Giải hộ mình với nhé :b) |x+1|+|x+2|+...+|x+9|=10x
b) Vì GTTĐ luôn lớn hơn hoặc bằng 0
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+...+\left|x+9\right|\ge0\forall x\)
\(\Leftrightarrow10x\ge0\forall x\)
\(\Leftrightarrow x\ge0\)
Từ đây ta có :
\(x+1+x+2+...+x+9=10x\)
\(9x+45=10x\)
\(10x-9x=45\)
\(x=45\)
Vậy x = 45
Tìm x:
a,2.{x+5}-x^2-5=0
b,2x.{x-5}-x.{3+2x}=26
c,{x+7}2-x.{x-3}=12
d,9.{x-2018}-x+2018=0
e,4x.{x+1}+{3x-2}.{3x+2}=15
b,2x.(x-5)-x.(3+2x)=26
2x2 - 10x - 3x - 2x2 = 26
-13x = 26
x = -2
c, (x+7)2-x.(x-3)=12
x2 +14x +49 - x2 + 3x = 12
17x + 49 = 12
17x = - 37
x = \(\dfrac{-37}{17}\)
d, 9( x -2018) - x+ 2018 =0
9( x -2018) - (x -2018) = 0
( 9-1)(x -2018) = 0
8( x -2018) = 0
x -2018 = 0
x = 2018
a: =>2x+10-x^2-5=0
=>-x^2+2x+5=0
=>\(x\in\left\{1+\sqrt{6};1-\sqrt{6}\right\}\)
e: =>4x^2+4x+9x^2-4=15
=>13x^2+4x-19=0
=>\(x\in\left\{\dfrac{-2+\sqrt{251}}{13};\dfrac{-2-\sqrt{251}}{13}\right\}\)
a)A=/x+7/+/x^2-169/-/x-2018/
b)B=[2018/2+2018/3+2028/4+.....+2019/2018]:[1/2018+2/2017+3/2016+......+2018]
(2x2 + x-2018)2 + 2(x2-4x-2030)2 = 3(2x2+x-2018)(x2-4x-2018)
Tìm x, y
| x - 2017 | + | y - 2018 | ≤ 0
3| x - y |5 + 10| y + 2/3 |7 ≤ 0
1/2(3/4x - 1/2)2018 + 2017/2018|4/5 y+ 6/25| ≤ 0
2017 |2x - y | 2018 + 2018 | y - 4 |2017 ≤ 0
cho: x^2+y^2+z^2+1/x^2+1/y^2+1/z^2=6 . tinh A=x^2018+y^2018+z^2018
Ta có: x^2 + y^2 +z^2 +1/x^2 +1/y^2 +1/z^2 =6
(x^2 -2 + 1/x^2) +(y^2 -2 +1/y^2) +(z^2 -2 +1/z^2) = 0
(x -1/x)^2 +(y-1/y)^2 +(z-1/z)^2 = 0
Suy ra: x- 1/x = 0 ,y- 1/y = 0 và z- 1/z = 0
x^2 -1/ x= 0,y^2 -1/ y=0 và z^2-1 /z =0
x^2 -1=0,y^2-1=0 và z^2-1=0
x^2 = 1.y^2 =1 và z^2 =1
Do đó: x^2018 = y^2018 =z^2018 =1
Vậy A =x^2018 +y^2018 +z^2018 =3
Giai he phuong trinh:
a) \(\left\{{}\begin{matrix}x^2-y^2=1\\4x^2-5xy=2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+\sqrt{y+2018}=1\\\sqrt{x+2018}+y=1\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x+y=\sqrt{4z-1}\\y+z=\sqrt{4x-1}\\z+x=\sqrt{4y-1}\end{matrix}\right.\)