Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thảo Nhi
Xem chi tiết
Võ Ngọc Phương
5 tháng 9 2023 lúc 16:41

a) Vì tổng A có 25 số hạng nên A = \(\dfrac{\left(1+25\right).25}{2}=325\)

b) Số số hạng là:

\(\left(50-2\right):2+1=25\) \(\left(số\right)\)

Tổng là:

\(\left(2+50\right).25:2=650\) 

c) Số số hạng là:

\(\left(51-3\right):2+1=25\) \(\left(số\right)\)

Tổng là:

\(\left(3+51\right).25:2=675\)

d) Số số hạng là:

\(\left(81-1\right):4+1=21\) \(\left(số\right)\)

Tổng là:

\(\left(1+81\right).21:2=861\)

\(#Wendy.Dang\)

Võ Ngọc Phương
5 tháng 9 2023 lúc 16:24

Đề bài là gì vậy bnn??

Trần Thảo Nhi
5 tháng 9 2023 lúc 16:29

tính nhanh nhé bạn

 

Phan Nhật Duy
Xem chi tiết
Vị Thần Lang Thang
Xem chi tiết
Yukina Trần
Xem chi tiết
Trịnh Ngọc Hân
19 tháng 7 2018 lúc 19:53

Bài 1:

Tao có:

\(81^7mod\left(405\right)\)

\(81^3\equiv81mod\left(405\right)\)

\(81^6\equiv81^2\equiv81mod\left(405\right)\)

\(81^7\equiv81^2.81\equiv81mod\left(405\right)\)

Ta có:

\(27^9mod\left(405\right)\)

\(27^3\equiv243mod\left(405\right)\)

\(27^9\equiv243^3\equiv162mod\left(405\right)\)

Ta có:

\(9^{13}mod\left(405\right)\)

\(9\equiv9mod\left(405\right)\)

\(9^3\equiv324mod\left(405\right)\)

\(9^9\equiv324^3\equiv324mod\left(405\right)\)

\(9^{10}\equiv324.9\equiv81mod\left(405\right)\)

\(9^{13}\equiv81.324\equiv324mod\left(405\right)\)

\(81^7+27^9-9^{13}:405=81+162-324:405=-0,2\)

\(\Rightarrow81^7+27^9-9^{13}⋮405\left(đpcm\right)\)

Casio không biết có áp dụng ntn vào bài này được không nữa? Nhưng mình ôn hổm rày thấy có bài gần giống vậy, nên mình làm thử bạn tham khảo nha chúc bạn học tốt! ^^

Ngọc Huyền
Xem chi tiết
Trang Nguyễn
Xem chi tiết
mảty
Xem chi tiết
I am➻Minh
3 tháng 3 2020 lúc 8:14

\(A=1+3^2+3^4+...+3^{100}\)

\(9A=3^2+3^4+3^6+...+3^{102}\)

\(8A=3^{102}-1\)

\(\Rightarrow8A-26=3^{102}-1-26=3^{102}-27\)

Vì \(3^{102}-27⋮3\)(1)

\(3^{102}-27⋮2\)(\(3^{102}-27\)là số chẵn )      (2)

\(3^{102}-27=9\left(3^{100}-3\right)\)\(\Rightarrow3^{102}-27⋮9\)(3)

Từ (1) , (2), (3) \(\Rightarrow8A-26⋮54\)\(\left(\left(2,3,9\right)=1\right)\)

vậy ...

Khách vãng lai đã xóa
Tran Le Khanh Linh
3 tháng 3 2020 lúc 9:32

\(A=1+3^2+3^4+...+3^{100}\)

\(\Leftrightarrow3^2A=3^2\left(1+3^2+3^4+....+3^{100}\right)\)

\(\Leftrightarrow9A=3^2+3^4+3^6+...+3^{102}\)

\(\Leftrightarrow9A-A=\left(3^2+3^4+3^6+....+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)

\(\Leftrightarrow8A=3^{102}-1\)

\(\Leftrightarrow8A-26=3^{102}-1-26=3^{102}-27\)

Ta có: \(3^{102}⋮3;27⋮3\Rightarrow3^{102}-27⋮3\left(1\right)\)

\(3^{102}-27⋮2\left(2\right)\)(3^102 -27 là số lẻ)

\(3^{102}-27=\left(3^2\right)^{51}-27=9^{51}-27⋮9\left(3\right)\)

(1)(2)(3) => 8A-26 chia hết cho 54 (đpcm)

Khách vãng lai đã xóa
Nguyễn Linh Chi
3 tháng 3 2020 lúc 10:19

Như các bạn đã trình bày: Chúng ta chứng minh được:

\(8A-26=3^{102}-27\)

Ta có: \(3^{102}-27⋮2\)( vì \(3^{102};27\)là số lẻ; hiệu 2 số lẻ là số chẵn )

và \(3^{102}-27=27\left(3^{99}-1\right)⋮27\)

vì ( 27; 2) = 1 và 27.2 = 54 nên: \(3^{102}-27⋮54\)

Khách vãng lai đã xóa
Huyền Nguyễn
Xem chi tiết
Nguyễn Ngọc Anh Minh
26 tháng 12 2023 lúc 8:18

1/

Gọi d là ước của n+3 và 2n+5 nên

\(n+3⋮d\Rightarrow2n+6⋮d\)

\(2n+5⋮d\)

\(\Rightarrow2n+6-\left(2n+5\right)=1⋮d\Rightarrow d=1\)

=> n+3 và 2n+5 nguyên tố cùng nhau

2/

\(5A=5+5^2+5^3+5^4+...+5^{100}\)

\(4A=5A-A=5^{100}-1\Rightarrow4A+1=5^{100}=\left(5^{50}\right)^2\) LÀ SỐ CHÍNH PHƯƠNG

3/

Tích của 2 số chẵn liên tiếp là

\(2n.\left(2n+2\right)=4n^2+4n=4n\left(n+1\right)\)

Ta có 

\(n\left(n+1\right)\) Là tích của 2 số tự nhiên liên tiếp và là số chẵn

\(\Rightarrow n\left(n+1\right)=2k\)

\(\Rightarrow4n\left(n+1\right)=4.2k=8k⋮8\)

Phạm Ninh Đan
Xem chi tiết