Tìm x :
25x . 75 x = 0
Tìm x
a) \(x+1-2\sqrt{x+1}=0\)
b) \(2x-4-\sqrt{x-2}=0\)
c) \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20 \)
\(a)ĐK:x\ge-1\\ \Leftrightarrow x+1=2\sqrt{x+1}\\ \Leftrightarrow x^2+2x+1=4x+4\\ \Leftrightarrow x^2+2x-4x+1-4=0\\ \Leftrightarrow x^2-2x-3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{3;-1\right\}\)
\(b)ĐK:x\ge2\\ \Leftrightarrow2x-4=\sqrt{x-2}\\ \Leftrightarrow4x^2-16x+16=x-2\\ \Leftrightarrow4x^2-16x-x+16+2=0\\ \Leftrightarrow4x^2-17x+18=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{9}{4};2\right\}\)
\(c)ĐK:x\ge3\\ \Leftrightarrow2\sqrt{9\left(x-3\right)}-\dfrac{1}{5}\sqrt{25\left(x-3\right)}-\dfrac{1}{7}\sqrt{49\left(x-3\right)}=20\\ \Leftrightarrow2.3\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\sqrt{x-3}=20\\ \Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\\ \Leftrightarrow4\sqrt{x-3}=20\\ \Leftrightarrow\sqrt{x-3}=5\\ \Leftrightarrow x-3=25\\ \Leftrightarrow x=25+3\\ \Leftrightarrow x=28\left(tm\right)\)
Vậy \(S=\left\{28\right\}\)
TÌM X
a)4x^4-16x^2=0
b)3x^3-1/9=0
c)x^2(x-3)=25x-75
d)x^2= -5x-6
e)x^4-5x^2+4=o
Bài 1 : Tìm x,biết :
a, √ x^4 =2
b, 3√ X+1-8=0
c 2 √X-3 + 25X -75 = 14
d, √ (3X-1)^2 =5
e, √ (X^2 +4X+4) -6 = 0
Anh em giúp nhớ mai mình kiểm tra rồi nhé
a) \(\sqrt{x^4}=2\)( ĐK x ∈ R )
⇔ \(\sqrt{\left(x^2\right)^2}=2\)
⇔ \(\left|x^2\right|=2\)
⇔ \(\orbr{\begin{cases}x^2=2\\x^2=-2\left(loai\right)\end{cases}}\)
⇔ x2 - 2 = 0
⇔ ( x - √2 )( x + √2 ) = 0
⇔ x - √2 = 0 hoặc x + √2 = 0
⇔ x = ±√2
b) \(3\sqrt{x+1}-8=0\)( ĐK x ≥ -1 )
⇔ \(3\sqrt{x+1}=8\)
⇔ \(\sqrt{x+1}=\frac{8}{3}\)
⇔ \(x+1=\frac{64}{9}\)
⇔ \(x=\frac{55}{9}\)( tm )
c) \(2\sqrt{x-3}+\sqrt{25x-75}=14\)( ĐK x ≥ 3 ) ( Vầy hợp lí hơn á )
⇔ \(2\sqrt{x-3}+\sqrt{5^2\left(x-3\right)}=14\)
⇔ \(2\sqrt{x-3}+5\sqrt{x-3}=14\)
⇔ \(7\sqrt{x-3}=14\)
⇔ \(\sqrt{x-3}=2\)
⇔ \(x-3=4\)
⇔ \(x=7\)( tm )
d) \(\sqrt{\left(3x-1\right)^2}=5\)( ĐK x ∈ R )
⇔ \(\left|3x-1\right|=5\)
⇔ \(\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)
e) \(\sqrt{x^2+4x+4}-6=0\)( ĐK x ∈ R )
⇔ \(\sqrt{\left(x+2\right)^2}=6\)
⇔ \(\left|x+2\right|=6\)
⇔ \(\orbr{\begin{cases}x+2=6\\x+2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-8\end{cases}}\)
\(a)\)\(\sqrt{x^4}=2\)\(\Leftrightarrow\)\(x^2=2\)\(\Rightarrow\)\(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Vậy \(x=\sqrt{2}\)\(hoặc\)\(x=-\sqrt{2}\)
\(b)\)\(ĐK:x\ge0\)
\(3\sqrt{x+1}-8=0\)\(\Leftrightarrow\)\(3\sqrt{x}=8\)\(\Leftrightarrow\)\(\sqrt{x}=\frac{8}{3}\)\(\Leftrightarrow\)\(x=(\frac{8}{3})^2\)\(\Leftrightarrow\)\(x=\frac{64}{9}\)\((TM)\)
Vậy \(x=\frac{64}{9}\)
\(d)\)\(\sqrt{(3x-1)^2}=5\)\(\Leftrightarrow\)\(|3x-1|=5\)\((1)\)
Nếu \(x\ge\frac{1}{3}\)thì \(\left(1\right)\Leftrightarrow3x-1=5\)\(\Leftrightarrow\)\(3x=6\)\(\Leftrightarrow\)\(x=2\)\(\left(TM\right)\)Nếu \(x< \frac{1}{3}\)thì \((1)\Leftrightarrow-\left(3x-1\right)=5\)\(\Leftrightarrow\)\(3x-1=-5\)\(\Leftrightarrow\)\(3x=-5+1\)\(\Leftrightarrow\)\(3x=-4\)\(\Leftrightarrow\)\(x=\frac{-4}{3}\left(TM\right)\)Vậy \(x\in\hept{2;\frac{-4}{3}}\)
\(e)\)\(\sqrt{x^2+4x+4}-6=0\)\(\Leftrightarrow\)\(\sqrt{(x+2)^2}=6\)\(\Leftrightarrow\)\(|x+2|=6\)\(\left(2\right)\)-Nếu \(x\ge-2\)thì \(\left(2\right)\Leftrightarrow x+2=6\Leftrightarrow x=4(TM)\)
-Nếu \(x< -2\)thì \(\left(2\right)\Leftrightarrow-\left(x+2\right)=6\Leftrightarrow x+2=-6\Leftrightarrow x=-8\left(TM\right)\)
Vậy \(x=4;x=-8\)
tìm x biết 0 ,25x^3+x^2+x=0
Ta có:
\(0.25x^3+x^2+x=0\)
\(\Leftrightarrow x^3+4x^2+4x=0\)
\(\Leftrightarrow x\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow x\left(x+2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
\(0,25x^3+x^2+x=0\)
\(x\left(0,25x^2+x+1\right)=0\)
\(x\left[\left(0,5x\right)^2+2\cdot0,5x\cdot1+1^2\right]=0\)
\(x\left(0,5x+1\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\0,5x+1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy.....
tìm x
\(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
\(\Leftrightarrow2\cdot3\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\cdot\sqrt{x-3}=20\)
\(\Leftrightarrow4\sqrt{x-3}=20\)
\(\Leftrightarrow x-3=25\)
hay x=28
Bài 1: Tìm x, biết
a)\(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
b) \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
c)\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)
\(\Leftrightarrow4\sqrt{x-3}=20\)
\(\Leftrightarrow x-3=25\)
hay x=28
b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)
\(\Leftrightarrow2\sqrt{x+2}=6\)
\(\Leftrightarrow x+2=9\)
hay x=7
cho biểu thức P= 2-\(\sqrt{x-3}\)+ 7\(\sqrt{4x-12}\)-3\(\sqrt{25x-75}\)+8\(\sqrt{\dfrac{x-3}{4}}\)+3
a) rút gọn P
b) Tìm giá trị của P khi x=12
c) tìm x để P=23
d) tìm x để P<8
Tìm x, biết 25 x - 2 . 10 x + 4 x = 0
A. x = 1 B. x = -1
C. x = 2 D. x = 0
Tìm x, biết 25 x - 2. 10 x + 4 x = 0
A. x = 1 B. x = -1
C. x = 2 D. x = 0