giải phương trình và nêu rõ cách tìm điều kiện
\(\sqrt{1-x}+\sqrt{4+x}=3\)
Giải phương trình trên(nêu rõ cách giải):
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-2\sqrt{x-1}}=2\sqrt{2}\)
1 Tìm điều kiện và tìm x:\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\)
2.Tìm điều kiện và giải phương trình:
\(\sqrt{x^2+4x+4}+\sqrt{x^2-10x+25}=7\)
Tìm điều kiện và tìm x bằng cách giải phương trình vô tỷ :\(\sqrt{3x-2}+x^2-x\) = 2
Giải phương trình sau(nêu rõ cách giải):
\(x+y+z+23=4\sqrt{x-1}+6\sqrt{y-2}+8\sqrt{z-3}\)
\(\left(x-1\right)-4\sqrt{x-1}+4+\left(y-2\right)-6\sqrt{y-2}+9+\left(z-3\right)-8\sqrt{z-3}+16=0\)
\(\left(\sqrt{x-1}-2\right)^2+\left(\sqrt{y-2}-3\right)^2+\left(\sqrt{z-3}-4\right)^2=0\)
giải ra x=5 y=11 z=19
Tìm điều kiện và giải phương trình:
\(\sqrt{x^2-\frac{1}{2}x+\frac{1}{16}}=\frac{1}{4}-x\)
\(\sqrt{36\left(x-4-2\sqrt{x-5}\right)}\) - 18 =0
Tìm điều kiện và giải phương trình
ĐK: \(\hept{\begin{cases}x-5\ge0\\x-4-2\sqrt{x-5}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge5\\\left(\sqrt{x-5}-1\right)^2\ge0\end{cases}}\Leftrightarrow x\ge5\)
\(\sqrt{36\left(x-4-2\sqrt{x-5}\right)}-18=0\)
\(\Leftrightarrow\sqrt{36\left(x-4-2\sqrt{x-5}\right)}=18\)
\(\Leftrightarrow\left(x-4-2\sqrt{x-5}\right)=9\)
\(\Leftrightarrow\left(\sqrt{x-5}-1\right)^2=9\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-5}-1=3\\\sqrt{x-5}-1=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x-5}=4\left(tm\right)\\\sqrt{x-5}=-2\left(l\right)\end{cases}}\Leftrightarrow x=21\left(tm\right)\)
Tìm điều kiện xác định và giải các phương trình sau
a) \(\frac{3}{x-5}.\frac{\sqrt{\left(5-x\right)^2.\left(x-1\right)}}{\sqrt{\left(x-1\right)^2}}-\frac{1}{x+1}\)
b) \(\sqrt{\frac{1+x}{2x}}:\sqrt{\frac{\left(x+1\right)^3}{8x}}-\sqrt{x^2-4x+4}=0\)
Giải phương trình:(Nhớ tìm điều kiện)
a) \(\sqrt{2x-1}=\sqrt{5}\)
b)\(\sqrt{x-5}\) = 3
c)\(\sqrt{4x^2+4x+1}=6\)
d)\(\sqrt{\left(x-3\right)^2}=3-x\)
e)\(\sqrt{2x+5}=\sqrt{1-x}\)
f)\(\sqrt{x^2-x}=\sqrt{3-x}\)
g)\(\sqrt{2x^2-3}=\sqrt{4x-3}\)
h)\(\sqrt{2x-5}=\sqrt{x-3}\)
i)\(\sqrt{x^2-x+6}=\sqrt{x^2+3}\)
a, ĐKXĐ : \(x\ge\dfrac{1}{2}\)
PT <=> 2x - 1 = 5
<=> x = 3 ( TM )
Vậy ...
b, ĐKXĐ : \(x\ge5\)
PT <=> x - 5 = 9
<=> x = 14 ( TM )
Vậy ...
c, PT <=> \(\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy ...
d, PT<=> \(\left|x-3\right|=3-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=x-3\\x-3=3-x\end{matrix}\right.\)
Vậy phương trình có vô số nghiệm với mọi x \(x\le3\)
e, ĐKXĐ : \(-\dfrac{5}{2}\le x\le1\)
PT <=> 2x + 5 = 1 - x
<=> 3x = -4
<=> \(x=-\dfrac{4}{3}\left(TM\right)\)
Vậy ...
f ĐKXĐ : \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)
PT <=> \(x^2-x=3-x\)
\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )
Vậy ...
a) \(\sqrt{2x-1}=\sqrt{5}\) (x \(\ge\dfrac{1}{2}\))
<=> 2x - 1 = 5
<=> x = 3 (tmđk)
Vậy S = \(\left\{3\right\}\)
b) \(\sqrt{x-5}=3\) (x\(\ge5\))
<=> x - 5 = 9
<=> x = 4 (ko tmđk)
Vậy x \(\in\varnothing\)
c) \(\sqrt{4x^2+4x+1}=6\) (x \(\in R\))
<=> \(\sqrt{\left(2x+1\right)^2}=6\)
<=> |2x + 1| = 6
<=> \(\left[{}\begin{matrix}\text{2x + 1=6}\\\text{2x + 1}=-6\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{2}\end{matrix}\right.\)(tmđk)
Vậy S = \(\left\{\dfrac{5}{2};\dfrac{-7}{2}\right\}\)
Tìm điều kiện của bất phương trình \(\sqrt{1-x}\) + \(\dfrac{x}{\sqrt{x+3}}\) < 0
(Chú thích: sqrt là căn bậc 2)
ĐKXĐ: -3 < x <= 1
Bpt --> sqrt(-x^2 - 2x + 3) + x < 0
<=> -3 <= x < (-1 - sqrt(7))/2
Kết hợp ĐKXĐ
--> -3 < x < (-1 - sqrt(7))/2