1/1x4 + 1/4x7+....+1/x.(x+3))
Bài 1) Tính giá trị của M
M= 3 x 4 x 5 + 4 x 5 x 6 + ... + 13 x 14 x 15
Bài 2) Tính giá trị của A, biết rằng
M= 1/1x4 + 1/4x7 + 1/7x10+ ...+ 1/97x100
Bài 1:
$M=3.4.5+4.5.6+...+13.14.15$
$4M=3.4.5(6-2)+4.5.6(7-3)+....+13.14.15(16-12)$
$=-2.3.4.5+3.4.5.6-3.4.5.6+4.5.6.7+....-12.13.14.15+13.14.15.16$
$=-2.3.4.5+13.14.15.16=43560$
$M=43560:4=10890$
Bài 2:
a.
$3M=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}$
$=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{100-97}{97.100}$
$=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}$
$=1-\frac{1}{100}=\frac{99}{100}$
$M=\frac{99}{100}:3=\frac{33}{100}$
1/1x4+1/4x7+...+1/61x64
3/1x4+3/5x9+...+97x101
4/1x3x5+4/3x5x7+...+4/47x49x51
mà mình không phải là Thiên Tỷ mình tên là Gia Yến đấy nhé
tinh ho to
A=2/1x2+2/2x3+2/3x4+......+2/99x101
B=(1+1/2)x(1+1/3)x(1+1/4)x.......x(1+1/2016)
C=3/1x4+3/4x7+3/7x10+............+3/64x67
D=(1-1/2)x(1-1/3)x(1-1/4)x............x(1-1/20)
Chị sẽ giúp em nốt mấy bài này, em còn nhận ra chị ko vậy?
\(A=\frac{2}{1x2}+\frac{2}{2x3}+\frac{2}{3x4}+...+\frac{2}{99x101}\)
\(A=2x\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{99x101}\right)\)
\(A=2x\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=2x\left(1-\frac{1}{101}\right)=2x\frac{100}{101}=\frac{200}{101}\)
------------------------------
\(B=\left(1+\frac{1}{2}\right)x\left(1+\frac{1}{3}\right)x\left(1+\frac{1}{4}\right)x...x\left(1+\frac{1}{2016}\right)\)
\(B=\frac{3}{2}x\frac{4}{3}x\frac{5}{4}x...x\frac{2017}{2016}\) (rút gọn từ trên tử xuống dưới mẫu nhé)
\(B=\frac{2017}{2}\)
-------------------------------
\(C=\frac{3}{1x4}+\frac{3}{4x7}+\frac{3}{7x10}+...+\frac{3}{64x67}\)
\(C=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{64}-\frac{1}{67}\)
\(C=1-\frac{1}{67}=\frac{67}{67}-\frac{1}{67}=\frac{66}{67}\)
--------------------------------
\(D=\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x...x\left(1-\frac{1}{20}\right)\)
\(D=\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x...x\frac{19}{20}\)(chỗ này cũng rút gọn từ trên tử xuống dưới mẫu)
\(D=\frac{1}{20}\)
Đề phải như này nhé
\(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+......+\frac{2}{99.100}\)
\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{99.100}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2.\left(1-\frac{1}{100}\right)\)
\(=2.\frac{99}{100}\)
1/1x4+1/4x7+...+1/34x37+1/37x40..
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{34.37}+\dfrac{1}{37.40}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{34}-\dfrac{1}{37}+\dfrac{1}{37}-\dfrac{1}{40}\)
\(=1-\dfrac{1}{40}\)
\(=\dfrac{39}{40}\)
1/(1×4) + 1/(4×7) + ... + 1/(34×37) + 1/(37×40)
= 1/3 × (1 - 1/4 + 1/4 - 1/7 + ... + 1/34 - 1/37 + 1/37 - 1/40)
= 1/3 × (1 - 1/40)
= 1/3 × 39/40
= 13/40
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{34.37}+\dfrac{1}{37.40}\)
\(=1-\left(\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{34}-\dfrac{1}{37}+\dfrac{1}{37}-\dfrac{1}{40}\right)\)
\(=1-\dfrac{1}{40}\)
\(=\dfrac{39}{40}\)
Vậy giá trị cần tìm là: \(\dfrac{39}{40}\)
\(3xA=\dfrac{4-1}{1x4}+\dfrac{7-4}{4x7}+...+\dfrac{37-34}{34x37}+\dfrac{40-37}{37x40}=\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{17}{ }+...+\dfrac{1}{34}-\dfrac{1}{37}+\dfrac{1}{37}-\dfrac{1}{40}=\)
\(=1-\dfrac{1}{40}=\dfrac{39}{40}\Rightarrow A=\dfrac{39}{40}:3=\dfrac{13}{40}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{34.37}+\dfrac{3}{37.40}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{34}-\dfrac{1}{37}+\dfrac{1}{37}-\dfrac{1}{40}\right)\)
\(=\dfrac{1}{3}.\dfrac{39}{40}\)
\(=\dfrac{13}{40}\)
-12/35 : 7/11 - 23/35 : 7/11 - 5/11
2 - 11/9 : 5/14 - 7/9 x 14/5
1/1x4 + 1/4x7 + 1/7x10 + .... + 1/2002x2005
giúp toii nha các bbii <3
\(-\frac{12}{35}\div\frac{7}{11}-\frac{23}{35}\div\frac{7}{11}-\frac{5}{11}\)
\(=\left(-\frac{12}{35}-\frac{23}{35}\right)\div\frac{7}{11}-\frac{5}{11}\)
\(=-1\div\frac{7}{11}-\frac{5}{11}\)
\(=-\frac{11}{7}-\frac{5}{11}\)
\(=-\frac{156}{77}\)
\(2-\frac{11}{9}\div\frac{5}{14}-\frac{7}{9}\times\frac{14}{5}\)
\(=2-\frac{154}{45}-\frac{98}{45}\)
\(=-\frac{64}{45}-\frac{98}{45}\)
\(=-\frac{18}{5}\)
s = cho 3/1x4 + 3/4x7+....+3/43x46 chứng tỏ s>1
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}\)
\(S=1-\frac{1}{46}<1\)
=>chứng minh bị sai hoặc đề sai
S=\(\frac{3}{1.4}+\frac{3}{4.7}+...........+\frac{3}{43.46}\)
=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...........+\frac{1}{43}-\frac{1}{46}\)
=\(1-\frac{1}{46}<1\)
\(\Rightarrow S<1\)
S = 3/1.4 + 3/4.7 + ... + 3/43.46
= 3 - 3/4 + 3/4 - 3/7 + ... + 3/43 - 3/46
= 135/46 > 1.
=> S > 1.
=> Điều cần chứng minh.
1/1x4+1/4x7+...+1/2002x2005
Ta có 1/1x4+1/4x7+...+1/2002x2005
<=> =1/3.3(1/1x4+1/4x7+...+1/2002x2005)
=1/3(3/1x4+3/4x7+...+3/2002x2005)
=1/3(1-1/4+1/4-1/7+...+1/2002-1/2005)
=1/3(1-1/2005)
=1/3.2004/2005
=1.2004/3.2005
=668/2005
\(\frac{1}{1.4}\)+ \(\frac{1}{4.7}\)+...+\(\frac{1}{2002.2005}\)=3(\(\frac{1}{1.4}\)+ \(\frac{1}{4.7}\)+...+ \(\frac{1}{2002.2005}\)):3=(\(\frac{3}{1.4}\)+ \(\frac{3}{4.7}\)+...+ \(\frac{3}{2002.2005}\)):3= (1-\(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{7}+...+\frac{1}{2002}-\frac{1}{2005}\)):3=(1-\(\frac{1}{2005}\)) : 3 = \(\frac{668}{2005}\)
Cho S = 3/1 x4 + 3/4x7 + 3/10x13 + 3/13x16
Hãy so sánh tổng S với số 1.( Gợi ý : ví dụ mẫu số 1x4 , 4x7 ... 13 x 16 đều cách nhau 3 đơn vị )
Mong các bạn giúp mk nha ! Mk đang cần khẩn cấp !!!
S = 3/1x4 + 3/4x7 +...+ 3/10x13 + 3/13x16
S = 1/1 - 1/4 + 1/4 - 1/7 +...+ 1/10 - 1/13 + 1/13 - 1/16
S = 1 + (-1/4 + 1/4) + (-1/7 + 1/7) +...+ (-1/10 + 1/10) + (-1/13 + 1/13) - 1/16
S = 1 + 0 + 0 +...+ 0 + 0 - 1/16
S = 1 - 1/16
S = 16/16 - 1/16
S = 15/16
So sánh: 15/16 với 1
vì 15<16
nên 15/16<1
vậy tổng S < 1
3S=1/3(1/1 - 1/4 + 1/4 - 1/7+...+1/13 - 1/16)
3S=1/3(1/1 - 1/16)
3S=1/3 x 15/16
S=15/16