Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mori Ran
Xem chi tiết
Mai Thành Đạt
11 tháng 6 2016 lúc 11:14

Từ giả thiết,ta có:\(\left(x+y+z\right)\left(x+y+z\right)=-5.9.5=-225\Leftrightarrow\left(x+y+z\right)^2=-225\)n

=> x+y+z không tồn tại.

=> không tồn tại các số x,y,z

Nguyễn Ngô Ngọc Vân
Xem chi tiết
Nami
2 tháng 9 2018 lúc 14:38

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

Lê Diệu Thương
Xem chi tiết
Tình Thiên Thu
15 tháng 8 2017 lúc 13:46

Ta có :*x(x+y+z) =   - 5 (1)

* y(x+y+z) = 9 (2)

* z(x+y+z)=5 (3)

Từ (1) ; (2) và (3) , ta có :

x(x+y+z) + y(x+y+z) + z(x+y+z) = -5 + 9 + 5

Dựa vào tính chất phân phối của phép nhân đối với phép cộng , ta có :

 (x+y+z) . (x+y+z) = 9 

\(\Rightarrow\left(x+y+z\right)^2=9\)

\(\Rightarrow x+y+z=3\) hoặc x +y+z=-3

\(-\) TRƯỜNG HỢP  : x+y+z =3 :

 * từ (1) có :  x(x+y+z=3 ) = -5   và        x+y+z=3 => x = \(\frac{x\left(x+y+z\right)}{x+y+z}=-\frac{5}{3}\)

* từ (2) có : y(x+y+z) =9   và x+y+z=3 \(\Rightarrow y=\frac{y\left(x+y+z\right)}{x+y+z}=\frac{9}{3}=3\)

* từ (3) có : z(x+y+z) = 5 và x+y+z=3 \(\Rightarrow z=\frac{z\left(x+y+z\right)}{x+y+z}=\frac{5}{3}\)

\(-\) TRƯỜNG HỢP x +y+z=-3 :

* từ (1) có  x(x+y+z=3 ) = -5   và        x+y+z=-3 \(\Rightarrow x=\frac{x\left(x+y+z\right)}{x+y+z}=\frac{-5}{-3}=\frac{5}{3}\)

* từ (2) có : y(x+y+z) =9   và x+y+z=-3 \(\Rightarrow y=\frac{y\left(x+y+z\right)}{x+y+z}=\frac{9}{-3}=-3\)

 * từ (3) có : z(x+y+z) =5   và x+y+z=-3 \(\Rightarrow z=\frac{z\left(x+y+z\right)}{x+y+z}=\frac{5}{-3}\)

Đảm bảo đúng 100% . K MIK NHA MN!

Kaori Miyazono
15 tháng 8 2017 lúc 13:49

Đặt

\(x.\left(x+y+z\right)=-5\) (1)

\(y.\left(x+y+z\right)=9\)      (2)

\(x.\left(x+y+z\right)=5\)      (3)

Cộng (1);(2);(3) với nhau ta được 

\(x.\left(x+y+z\right)+y.\left(x+y+z\right)+z.\left(x+y+z\right)=\left(x+y+z\right).\left(x+y+z\right)\)

\(=\left(x+y+z\right)^2=\left(-5\right)+9+5=9=3^2=\left(-3\right)^2\)

Suy ra \(x+y+z=3\)hoặc \(x+y+z=-3\)

Thay \(x+y+z=3\)vào (1) ta được \(x.3=-5\Rightarrow x=-\frac{3}{5}\)

Thay\(x+y+z=3\)vào (2) ta được \(y.3=9\Rightarrow y=3\)

Thay \(x+y+z=3\)vào (3) ta được \(z.3=5\Rightarrow z=\frac{3}{5}\)

Ta có \(\left(x;y;z\right)=\left(-\frac{3}{5};3;\frac{3}{5}\right)\)

Thay \(x+y+z=-3\)vào (1) ta được \(x.\left(-3\right)=05\Rightarrow x=\frac{3}{5}\)

Thay \(x+y+z=-3\)vào (2) ta được \(y.\left(-3\right)=9\Rightarrow y=-3\)

Thay \(x+y+z=-3\)vào (3) ta được \(z.\left(-3\right)=5\Rightarrow x=-\frac{3}{5}\)

Ta có \(\left(x;y;z\right)=\left(\frac{3}{5};-3;-\frac{3}{5}\right)\)

Vậy các cặp \(\left(x;y;z\right)\)thỏa mãn là : \(\left(-\frac{3}{5};3;\frac{3}{5}\right)\)và \(\left(\frac{3}{5};-3;-\frac{3}{5}\right)\)

Tình Thiên Thu
15 tháng 8 2017 lúc 13:52

nếu bn là người công tâm.bn nên chọn đáp án của mình vì mik trả lời trc vs đúng mà

Vũ Thùy Linh
Xem chi tiết
Trần Đức Thắng
21 tháng 6 2015 lúc 9:51

x(x+y+z) = -5 (1)

y(x+y+z) = 9  (2)

z(x+y+z) = 5  (3)

Cộng (1) ( 2)và (3) ta có

x(x+y+z) + y(x+y+z) + z(x+y+z) = -5 + 9 +5 

=> (x+y+z) (x +y +z) = 9 

=> (x+y+z)^2 = 9 

=> x+y +z = 3 hoặc x+y +z = - 3 

(+) TH1 x + y +z = 3 

thay vào (1) ta có : x . 3 = -5 => x = -5/3

thay vào (2) ta có : y . 3 =  => y =3

thay vào 3 ta có z . 3 = 5 => z = 5/3

 (+) TH2 tương tự 

(lik e nha **** hết cho mình đi)

Phạm Hoàng Ngọc Thanh
Xem chi tiết
Lãng Tử Hào Hoa
28 tháng 6 2017 lúc 8:43

Ta có: \(\hept{\begin{cases}x\left(x+y+z\right)=-5\left(1\right)\\y\left(x+y+z\right)=9\left(2\right)\\z\left(x+y+z\right)=5\left(3\right)\end{cases}}\)

Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow\left(x+y+z\right)^2=9\)

\(\Leftrightarrow x+y+z=-3\) hoặc \(3\)

Nếu \(x+y+z=-3\) thì \(\hept{\begin{cases}x=\frac{-5}{-3}=\frac{5}{3}\\y=\frac{9}{-3}=-3\\z=\frac{5}{-3}=\frac{-5}{3}\end{cases}}\)

Nếu \(x+y+z=3\) thì: \(\hept{\begin{cases}x=\frac{-5}{3}=-\frac{5}{3}\\y=\frac{9}{3}=3\\z=\frac{5}{3}=\frac{5}{3}\end{cases}}\)

Vậy...

Nguyễn Thục Hiền
Xem chi tiết
Lưu Hiền
3 tháng 9 2016 lúc 22:48

mình sẽ đơn giản cách giải ấy cho cậu

cậu lần lượt cộng các vế trái và xế phải lại thì ta sẽ được (x + y + z)(x + y + z) = -5 + 9 + 5

(x + y + z)2 = 9

chắc bạn học qua lũy thừa rồi nhỉ, thì ta sẽ có được 9 = 32 hoặc 9 = (-3)2

vậy có 2 trường hợp hoặc (x + y + z) = 3 hoặc (x + y + z) = -3

với (x + y + z) = 3 thì thay vào x (x + y + z) = -5 => 3x = -5 => x = \(\frac{-5}{3}\)

tương tự ,cậu thay (x + y + z) = 3 vào vao 2 biểu thức còn lại ta sẽ được y = 3, z = \(\frac{5}{3}\)

Và trường hợp còn lại (x + y + z) = -3  cậu cũng thay lần lượt vào 3 biểu thức trên, ta sẽ suy ra được

x = \(\frac{5}{3}\) ; y = -3 ; z= \(\frac{-5}{3}\)

vậy \(\orbr{\begin{cases}x=\frac{-5}{3};y=3;z=\frac{5}{3}\\x=\frac{5}{3};y=-3;z=\frac{-5}{3}\end{cases}}\) thế nhé, mình lười viết đầy đủ phần trên cho nên neesuko hiểu cứ hỏi mình

I LOVE YOU OO
3 tháng 9 2016 lúc 22:08

Sory mk nam nay moi len lop 6 

Thắng Nguyễn
3 tháng 9 2016 lúc 22:11

\(\hept{\begin{cases}x\left(x+y+z\right)=-5\left(1\right)\\y\left(x+y+z\right)=9\left(2\right)\\z\left(x+y+z\right)=5\left(3\right)\end{cases}}\)

Cộng theo vế của (1), (2) và (3) ta đc:

\(\left(x+y+z\right)^2=9=\left(-3\right)^2\)hoặc\(3^2\)

\(\Rightarrow x+y+z=-3\)hoặc\(3\)

Xét \(x+y+z=3\)lần lượt thay vào (1), (2), (3) ta có:

\(\hept{\begin{cases}x=-\frac{5}{3}\\y=3\\z=\frac{5}{3}\end{cases}}\)

Xét \(x+y+z=-3\)cũng thay vào (1),(2),(3) đc:

\(\hept{\begin{cases}x=\frac{5}{3}\\y=-3\\z=-\frac{5}{3}\end{cases}}\)

Vậy....

NGUYEN THI PHUONG NHUNG
Xem chi tiết
Phan Đăng Nguyên
Xem chi tiết
Le Nhat Phuong
16 tháng 9 2017 lúc 11:05

Phan Đăng Nguyên bn lần lượt cộng 2 vế lại với nhau ta được (x+y+z)(x+y+z)=-5+9+5 (x+y+z)2 = 9

9=32 hoặc 9=(-3)2

Vậy có 2 trường hợp hoặc (x+y+z)=-5=>x = \(\frac{5}{3}\)

Tương tự, thay vào (x+y+z)=3 vào 2 biểu thức còn lại ta sẽ đc y=3, z=\(\frac{5}{3}\)

Trường hợp còn lại (x+y+z)=-3 thay lần lượt vào 3 biểu thứ trên, ta sẽ suy ra đc \(x=\frac{5}{3};y=-3;z=\frac{-5}{3}\)

Vậy \(\orbr{\begin{cases}x=\frac{-5}{3};y=3;z=\frac{5}{3}\\x=\frac{5}{3};y=-3;z=\frac{-5}{3}\end{cases}}\)

Phan Đăng Nguyên
16 tháng 9 2017 lúc 11:14

tìm các số hữu tỉ x,y,z biết rằng:x(x+y+z)=-5;y(x+y+z)=9;z(x+y+z)=5

Đặng Nguyễn Quỳnh Nga
Xem chi tiết
Lương Ngọc Anh
21 tháng 7 2016 lúc 18:27

Cộng theo vế 3 dữ kiện của bài toán ta được:

\(\left(x+y+z\right)^2=36\)

<=> \(x+y+z=\pm6\)

TH1: x+y+z=6

=> x= -12:6=-2

      y = 18:6=3

    z=  30:6=5

TH2 : x+y+z =-6

 => x= -12:-6=2

    y=  18:-6=-3

  z= 30:-6=-5

Vậy các cặp số hữu tỉ (x;y;z) là : \(\left(-2;3;5\right);\left(2;-3;-5\right)\)