cộng 3 đẳng thức , ta được :
x . ( x + y + z ) + y . ( x + y + z ) + z . ( x + y + z ) = ( -5 ) + 9 + 5
( x + y + z ) . ( x + y + z ) = 9
( x + y + z )2 = 32 hoặc ( x + y + z )2 = ( -3 )2
=> \(\orbr{\begin{cases}x+y+z=3\\x+y+z=-3\end{cases}}\)
nếu x + y + z = 3 thì :
x . ( x + y + z ) = -5
x . 3 = -5
x = \(\frac{-5}{3}\)
y . ( x + y + z ) = 9
y . 3 = 9
y = 3
z . ( x + y + z ) = 5
z . 3 = 5
z = \(\frac{5}{3}\)
nếu x + y + z = -3 thì :
x . ( x + y + z ) = -5
x . ( -3 ) = ( -5 )
x = \(\frac{5}{3}\)
y . ( x + y + z ) = 9
y . ( -3 ) = 9
y = ( -3 )
z . ( x + y + z ) = 5
z . ( -3 ) = 5
z = \(\frac{-5}{3}\)
Vậy ...