Cho A= 7^1+7^2+7^3+....+7^100
Chứng minh 6A+7 là lũy thừa cơ số 7
cho A= 1+7+7^2+7^3+...+7^98
chứng minh rằng A chia hết cho7. Chứng minh 6A+1 là một lũy thừa của 7
Chứng minh 6A+7 là 1 lũy thừa của 7 với:A=7+7^1+7^2+7^3+...+7^200
\(A=7+7^2+.....+7^{200}\)
\(7A=7^2+7^3+7^4+.....+7^{201}\)
\(7A-A=6A=7^{201}-7\)
\(\Rightarrow6A+7=7^{201}\)
Vậy 6A + 7 là 1 luỹ thừa của 7
Cho A = \(7+7^2+7^3+..+7^{100}\)
Chứng minh rằng 6A +7 là một lũy thừa của 7.
\(A=7+7^2+.....+7^{100}\)
\(\Leftrightarrow7A=7^2+7^3+.....+7^{100}+7^{101}\)
\(\Leftrightarrow7A-A=\left(7^2+7^3+....+7^{101}\right)-\left(7+7^2+...+7^{100}\right)\)
\(\Leftrightarrow6A=7^{101}-7\)
\(\Leftrightarrow6A+7=7^{101}\)
\(\Leftrightarrow6A+7\) là 1 lũy thừa của 7
Cho \(A=7+7^2+7^3+7^4+...+7^{48}+7^{49}.\)
a)Chứng minh rằng:\(S-7\)chia hết cho 19.
b)Chứng minh rằng:\(6S+7\)là lũy thừa của 7.
B,
\(7S=7^2+7^3+.......+7^{50}\)
\(7S-S=\left(7^2+7^3+.....+7^{49}\right)-\left(7+7^2+........+7^{50}\right)\)
\(\Rightarrow6S=7^{50}-7\)
\(\Rightarrow6S+7=7^{50}-7+7=7^{50}\)
Vậy 6S+7 là lũy thừa của 7
a) S = 7 + 72 + 73 + 74 + ... + 748 + 749 ( có 49 số, 49 chia 3 dư 1)
S = 7 + (72 + 73 + 74) + (75 + 76 + 77) + ... + (747 + 748 + 749)
S = 7 + 72.(1 + 7 + 72) + 75.(1 + 7 + 72) + ... + 747.(1 + 7 + 72)
S = 7 + 72.57 + 75.57 + ... + 747.57
S = 7 + 57.(72 + 75 + ... + 747)
S = 7 + 19.3.(72 + 75 + ... + 747)
S - 7 = 19.3.(72 + 75 + ... + 747) chia hết cho 19
=> đpcm
b) S = 7 + 72 + 73 + ... + 748 + 749
7S = 72 + 73 + 74 + ... + 749 + 750
7S - S = 750 - 7 = 6S
6S + 7 = 750 là lũy thừa của 7
=> đpcm
Đề bài bn chép sai, mk sửa lại rùi đó
Chứng minh rằng ( đưa các lũy thừa về cùng cơ số rồi đặt thừa số chung )
55 - 54 + 53 chia hết cho 7
76 + 75 - 74 chia hết cho 11
S = 2 + 22 + 23 + ... + 212 chia hết cho 3 ; 7;5;6
55-54+53=53.(52-51+50)=53.(25-5+1)=53.21=53.3.7 chia hết cho 7
=>ĐPCM
76+75-74=74.(72+71-70)=74.(49+7-1)=74.55=74.5.11 chia hết cho 11
=>ĐPCM
S=7+72+73+......+749
CHỨNG MINH RẰNG : S - 7 CHIA HẾT CHO 19
CMR : 6S +7 LÀ LŨY THỪA CỦA 7
S=7+72+73+......+749
CHỨNG MINH RẰNG : S - 7 CHIA HẾT CHO 19
CMR : 6S +7 LÀ LŨY THỪA CỦA 7
Các bài toán Dạng CỘNG TRỪ LŨY THỪA CÙNG CƠ SỐ:
Bài 1: Tính:
A= \(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+........+\frac{1}{5^{19}}+\frac{1}{5^{20}}\) (RIÊNG BÀI 1 LÀM 2 CÁCH)
Bài 2: Chứng minh chia hết:
a, A= \(1-3+3^2-3^3+..........+3^{19}-3^{20}\)Chia hết cho 2
b, B= \(1+7+7^2+7^3+.........+7^{20}+7^{21}\) Chia hết cho 4
\(\frac{1}{5}A=\frac{1}{5}.\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{20}}\right)\)
\(\Rightarrow\frac{1}{5}A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{20}}\)
\(\Rightarrow\frac{1}{5}A-A=\left(\frac{1}{5^2}+...+\frac{1}{5^{21}}\right)-\left(\frac{1}{5}+...+\frac{1}{5^{20}}\right)\)
\(-\frac{4}{5}A=\frac{1}{5^{21}}-\frac{1}{5}\)
\(\Rightarrow A=\left(\frac{1}{5^{21}}-\frac{1}{5}\right):\left(-\frac{4}{5}\right)\)
các câu còn lại tương tự thôi
B1 c2
dùng xích ma \(\text{∑}^{20}_1\left(\frac{1}{5^x}\right)=0,25=\frac{1}{4}\)
chỗ phía dưới là 1 nha nó bị che