Trên cạnh Ax và Ay của góc xAy lần lượt lấy điểm B và C sao cho AB=AC. Tia phân giác At của góc xAy cắt BC tại D. Chứng minh:
a, Góc ABC = Góc ACB
b, Góc ADB = Góc ADC = 90 độ
cho góc nhọn xAy. Trên cạnh Ax lấy 2 điểm B và C sao cho AB=4cm; AC=6cm. Trên cạnh Ay lấy 2 điểm D và E sao cho AD=2cm; AE=12cm. Tia phân giác của góc xAy cắt BD tại I và cắt CE tại k.
a. so sánh AD/AB và AE/AC
b. so sánh góc ACE và góc ADB
c. cm: AI.KE=AK.IB
d. cho EC =10cm. Tính BD,DI
e. cm; KE.KC=9IB.ID
a/ Ta có: AD=2cm, AB=4cm, AE=12cm, AC=6cm
\(=>\left\{{}\begin{matrix}\dfrac{AD}{AB}=\dfrac{2}{4}=\dfrac{1}{2}\\\dfrac{AE}{AC}=\dfrac{12}{6}=2\end{matrix}\right.\)
\(=>\dfrac{AE}{AC}>\dfrac{AD}{AB}\)
a/ Ta có: AD=2cm, AB=4cm, AE=12cm, AC=6cm
=>AEAC>ADAB
Trên cạnh Ax và Ay của xAy, lần lượt lấy các điểm B và C sao cho AB = AC. Tia phân giác At của xAy cắt BC tại D. So sánh tam giác ADB và tam giác CDA và so sánh các cặp cạnh và góc tướng ứng giữa chúng.
Giúp mình nha các bạn
Cho góc xAy. Trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Tia phân giác Az của góc xAy cắt BC tại H.
a) Chứng minh: tam giác AHB = tam giác AHC
b) Chứng minh AH vuông góc BC
c) Lấy điểm I thuộc đoạn thẳng AH, kẻ IM vuông góc Ax, IN vuông góc Ay. So sánh BM và CN?
d) Chứng minh MN//BC
Bài 30:
TRên cạnh Ax và Ay của xAy , lần lượt lấy B và C sao cho AB = AC
Tia phân giác At của xAy cắt BC tại D . Chứng minh rằng:
ADB = ADC = 90o
1. Cho tam giác ABC có AB < AC, có AD là đường phân giác. Trên cạnh AC lấy E sao cho AE = AB. So sánh tam giác ADB và tam giác AED.
2. Trên cạnh Ax và Ay của xAy, lần lượt lấy các điểm B và C sao cho AB = AC. Tia phân giác At của xAy cắt BC tại D. So sánh tam giác ADB và tam giác CDA và so sánh các cặp cạnh và góc tương ứng giữa chúng.
Giúp mk vs huuhu
Cho góc xAy = 40 độ, trên tia phân giác At của góc A lấy điểm D. Kẻ DB vuông góc Ax tại B, DC vuông góc Ay tại C
a, C/m tam giác ADB = tam giác ADC và tam giác ABC cân
b, C/m AD là đường trung trực của BC
c, lấy BD giao Ay tại M, CD giao Ax tại N. C/m tam giác BDN = tam giác CDm
d, C/m Ad là đg trung trực của MN và BC//MN
a: Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
\(\widehat{BAD}=\widehat{CAD}\)
Do đó: ΔABD=ΔACD
=>AB=AC và DB=DC
Xét ΔABC có AB=AC
nên ΔABC cân tại A
b: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: DB=DC
=>D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AD là đường trung trực của BC
c: Xét ΔDBN vuông tại B và ΔDCM vuông tại C có
DB=DC
\(\widehat{BDN}=\widehat{CDM}\)(hai góc đối đỉnh)
Do đó: ΔDBN=ΔDCM
d: Ta có: ΔDBN=ΔDCM
=>DN=DM và BN=CM
Ta có: AB+BN=AN
AC+CM=AM
mà AB=AC và BN=CM
nên AN=AM
=>A nằm trên đường trung trực của NM(3)
ta có: DM=DN
=>D nằm trên đường trung trực của MN(4)
Từ (3) và (4) suy ra AD là đường trung trực của MN
Xét ΔAMN có \(\dfrac{AB}{BN}=\dfrac{AC}{CM}\)
nên BC//MN
Cho At là tia phân giác của góc xAy. Trên tia Ax lấy điểm B. Từ B kẻ tia BD vuông góc Ax cắt At tại D và cắt Ay tại H. Từ D kẻ đường thẳng vuông góc Ay tại C và cắt Ax tại E
a/ Chứng minh AB=AC
b/ Chứng minh BE=CH
c/ Chứng minh ED=DH
cho xay khác góc bẹt. Trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB=AC. Gọi At là tia phân giác của góc xAy, I là giao điểm của At và BC a) Chúng minh tám giác ABI=tam giác ACI b) chúng minh AI vuông góc với BC c) trên tia It lấy D sao cho AI=ID> Chúng minh CD song son với AB
Cho góc nhọn xAy. Trên cạnh Ax lấy 2 điểm B, C sao cho AB = 4cm, AC = 6cm. Trên cạnh Ay, lấy 2 điểm D, E sao cho AD = 2cm, AE = 12cm. Tia phân giác của góc xAy cắt BD tại I và cắt CE tại K.
a) So sánh và
b) Cm góc ACE= góc ADB
c) Cm AI.KE = AK.IB
d) Cho EC = 10cm. Tính BD, BI.
e) Cm KE.KC = 9IB.ID