Khi chia một số tự nhiên a cho 72, ta được số dư là 18. Hỏi a chia hết cho số nào trong cac số 2;3;4;5;6;7;8;9 ?
khi chia 1 số tự nhiên a cho 72 ta được số dư 18 hỏi a có chia hết trong các số 2 3 4 5 6 8 9 không vì sao
you don't have a bitch then you isn't a boy
Câu 7: Khi chia số tự nhiên b cho 24, ta được số dư là 10. Hỏi số b có chia hết cho 6 không?
Câu 8: Khi chia số tự nhiên c cho 36, ta được số dư là 18. Hỏi số c chia hết cho số nào trong các số: 2, 3, 4, 5, 6, 7, 8, 9 ?
Câu 7:Ta có:24 chia hết cho 6 nên nếu 24 chia một số và có dư, b ko chia hết cho 6
Câu 8:VD:c chia hết cho các số 2,3,6,9
bài 1:
a)khi chia số tự nhiên a cho 16 ta được số dư là 6. Hỏi số a có chia hết cho 2 không?Có chia hết cho 4 không?
b)khi chia số tự nhiên b cho 36 ta được số dư là 24. Hỏi số b có chia hết cho 3 không?Có chia hết cho 4 không?Có chia hết cho 18 không?
a) a chia hết cho 2 nhưng ko chia hết cho 4
b) b chia hết cho 3,4 nhưng ko chia hết cho 18
bài 1:
a)khi chia số tự nhiên a cho 16 ta được số dư là 6. Hỏi số a có chia hết cho 2 không?Có chia hết cho 4 không?
b)khi chia số tự nhiên b cho 36 ta được số dư là 24. Hỏi số b có chia hết cho 3 không?Có chia hết cho 4 không?Có chia hết cho 18 không?
a) Chia hết cho 2
ko chia hết cho 4
b)
Chia hết cho 3, 4, 18
khi chia số tự nhiên b cho 72, được số dư là 24. hỏi số a có chia hết cho 2, cho 18 không
4. Khi chia số tự nhiên a cho 72, được số dư là 24. Hỏi số a có chia hết cho 2, cho 3, cho 6 không?
5. Chứng minh rằng: trong bốn số tự nhiên liên tiếp, có một số chia hết cho 4.
\(a:72\) dư 24 \(\Rightarrow a⋮48\)
Mà \(48⋮2;48⋮3;48⋮6\)
\(\Rightarrow a⋮2;a⋮3;a⋮6\)
Khi chia số tự nhiên a cho 18, ta được số dư là 12. Hỏi số a có chia hết cho 3 không ? Có chia hết cho 9 không ?
Ta có: a chia 18 dư 2
Đặt \(a=18k+12\left(k\in N\right)\)
\(a=18k+12=3\left(6k+4\right)⋮3\)
\(a=18k+12=9\left(2k+1\right)+3⋮̸9\)
\(a=18k+12=3\left(6k+4\right)⋮3\)
\(a=18k+12=18k+9+3=9\left(2k+1\right)+3⋮̸9\)
1 khi chia số tự nhiên a cho 24 ta được số dư là 10 hỏi số a có chia hết cho 2 không có chia hết cho 4 không
2 chứng tỏ rằng
trong hai số tự nhiên liên tiếp có một số chia hết cho 2
trong một số tự nhiên liên tiếp có một số chia hết cho 3
1) Gọi thương của a khi chia cho 24 là: x
Ta có:\(a=24x+10=2\left(12x+5\right)\)\(⋮\)\(2\)
=> a chi hết cho 2
\(a=24x+10\)
Nhận thấy: \(24x\)\(⋮\)\(4\)nhưng \(10\)không chia hết cho \(4\)
=> a không chia hết cho \(4\)
2)
a) Gọi 2 số tự nhiên liên tiếp là: \(a;\)\(a+1\)
nếu: \(a=2k\)thì \(a⋮2\)
nếu: \(a=2k+1\)thì: \(a+1=2k+1+1=2k+2\)\(⋮\)\(2\)
Vậy trong 2 số tự nhiên liên tiếp luôn tồn tại 1 số chhia hết cho 2
b) ktra lại đề
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
Khi chia số tự nhiên A cho 285,ta được số dư là 72.Hỏi A có chia hết cho 3 không?Có chia hết cho 5 không?
Gọi B là thương của phép chia A cho 285
Ta có :\(A:285=B\left(dư72\right)\)
\(\Rightarrow A=285B+72\)
\(\Rightarrow A=3\left(95B+24\right)\)
Vì \(3\left(95B+24\right)⋮3\)
\(\Rightarrow A⋮3\)(1)
Ta lại có :\(A=285B+72\)thì chỉ có \(285B⋮5\)còn 72 không chia hết cho 5
\(\Rightarrow A\)không chia hết cho 5 (2)
Từ (1) và (2)
\(\Rightarrow A⋮3\)và \(A\)không chia hết cho 5
Vì số tự nhiên A chia cho 285 dư 72 nên A có dạng 285k+72(với k\(\in\) N)
Vì 285 \(⋮\) 3 và 72 \(⋮\) 3=>285k+72\(⋮\)3 hay A\(⋮\) 3
Vì số tự nhiên A chia cho 285 dư 72 nên A có dạng 285k+72(với k\(\in\) N)
Vì 285 \(⋮\)5 nhưng 72 \(⋮̸\) 5=> 285k+72 \(⋮̸\) 5 hay A \(⋮̸\) 5!!