Cho tam giác ABC vuông tại A có đường cao AH. Biết BH = 10 cm, CH = 42 cm. Tính độ dài vecto AB
Cho tam giác ABC vuông tại A có đường cao AH biết AB = 6 cm BC = 12 cm Tính độ dài đoạn thẳng BH, CH
Lời giải:
Áp dụng công thức hệ thức lượng trong tam giác vuông ta có:
$AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{6^2}{12}=3$ (cm)
$CH=BC-BH=12-3=9$ (cm)
Cho tam giác ABC vuông tại A có đường cao AH. Độ dài BH = 4cm; CH = 16 cm. Tính độ dài đoạn AB
A.4cm
B.5 cm
C.4 5 cm
D. 12 cm
Đáp án là C
Áp dụng hệ thức lượng trong tam giác vuông:
A B 2 = BH.BC = 4.(4 + 16) = 80 ⇒ AB = 4 5 cm
Cho tam giác ABC vuông tại A có đường cao AH . Hãy tính độ dài các đoạn BC,AH,BH,CH , nếu biết :
1, AB =12 cm , AC= 9cm
2, AB = \(\sqrt{2}\) cm , AC = \(\sqrt{2}\) cm
1: \(BC=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=7,2\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{144}{15}=9,6\left(cm\right)\)
CH=5,4(cm)
2: \(BC=\sqrt{2+2}=2\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=1\left(cm\right)\)
\(BH=CH=AH=1\left(cm\right)\)
Bài 1 Cho tam giác ABC vuông tại A có đường cao AH .biết BH = 9 cm ,HC = 16 cm .tính AH; AC ;số đo góc ABC (số đo góc làm tròn đến độ)
bài 2 Cho tam giác ABC vuông tại A , đường cao AH. biết AB = 3 cm ,AC = 4 cm. Tính độ dài các cạnh BC, AH và số đo góc ACB (làm tròn đến độ)
Bài 1:
AH=12cm
AC=20cm
\(\widehat{ABC}=37^0\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB : AC = 3 : 7, AH = 42 cm. Tính BH, CH
Áp dụng hệ thức lượng ta có: \(AB^2=BH.BC;\) \(AC^2=HC.BC\)
=>\(\left(\frac{AB}{AC}\right)^2=\frac{BH.BC}{CH.BC}=\frac{BH}{HC}\); TA LẠI CÓ: \(\frac{AB}{AC}=\frac{3}{7}\Leftrightarrow\left(\frac{AB}{AC}\right)^2=\frac{9}{49}\Leftrightarrow\frac{BH}{CH}=\frac{9}{49}\Rightarrow BH=\frac{9}{49}.CH\)
VẪN DÙNG HỆ THỨC LƯỢNG TA CÓ:
\(AH^2=HB.HC\Leftrightarrow HB.HC=42^2=1764\Leftrightarrow\frac{9}{49}CH.CH=1764\Leftrightarrow CH=98\Leftrightarrow BH=18\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>AB2=BH.BC; AC2=HC.BC
=>(ABAC )2=BH.BCCH.BC =BHHC ; TA LẠI CÓ:
Cho tam giác ABC vuông tại A có đường cao AH . Hãy tính độ dài các đoạn BH , CH , AH , AC , nếu biết :
1, AB =20 cm , BC= 25cm
2, AB= 5cm, BC= 1dm
1: \(AC=\sqrt{25^2-20^2}=15\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
\(BH=\sqrt{20^2-12^2}=16\left(cm\right)\)
CH=BC-BC=9(cm)
2: \(BC=10cm\)
\(AC=5\sqrt{3}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{5^2}{10}=2.5\left(cm\right)\)
CH=BC-BH=7,5(cm)
Cho tam giác ABC vuông tại A, AH là đường cao. Tính lần lượt độ dài các đoạn thẳng BH,CH,AH,AC nếu biết:
1)AB=6 cm; BC=8 cm
Áp dụng định lí Pytago vào ΔACB vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=64-36=28\)
hay \(AC=2\sqrt{7}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{6^2}{8}=\dfrac{36}{8}=4.5\left(cm\right)\\CH=\dfrac{28}{8}=3.5\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2=6^2-4.5^2=15.75\left(cm\right)\)
hay \(AH=\dfrac{3\sqrt{7}}{2}\left(cm\right)\)
Cho tam giác ABC cân tại C .Kẻ AH vuông góc với BC (H thuộc BC ) Cho AH =6cm ,AB =10 cm ,AC =12 cm a)Tính BH ,CH b)Tính độ dài đường cao hạ từ C xuống AB
Cho tam giác ABC vuông tại A có AB = 3 cm AC = 4 cm , đường cao AH a, CM : tam giác ABC đồng dạng tam giác HBA từ đó suy ra ab² = BC . BH b , tính BC và BH c, Kẻ HE vuông góc AB , HF vuông góc AC Chứng minh AH . BH = BE.AC và tính độ dài BE
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm