Tọa độ các giao điểm của đường thẳng y = 7x và parabol y =-x²
hoành độ giao điểm của đường thẳng y= 1- x và Parabol y = x2 - 2x + 1
tọa độ giao điểm của đường thẳng d: y= -x + 4 và Parabol y = x2 - 7x + 12
xác định tọa độ các giao điểm của parabol (P):y=x2 và đường thẳng d:y= √3 x - √3 +1
Phương trình hoành độ giao điểm là:
\(x^2-x\sqrt{3}+\sqrt{3}-1=0\)
\(\text{Δ}=\left(\sqrt{3}\right)^2-4\cdot1\cdot\left(\sqrt{3}-1\right)=3-4\sqrt{3}+4=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{\sqrt{3}-2+\sqrt{3}}{2}=\sqrt{3}-1\\x_2=\dfrac{\sqrt{3}+2-\sqrt{3}}{2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y_1=4-2\sqrt{3}\\y_2=1\end{matrix}\right.\)
Cho parabol (P) : y = x² và đường thẳng d: y = -x + 2
a) vẽ parabol và đường thẳng d trên cùng một hệ trục tọa độ.
b) xác định tọa độ giao điểm của P và d bằng phép tính
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x^2+x-2=0\\y=-x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(x-1\right)=0\\y=-x+2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(-2;4\right);\left(1;1\right)\right\}\)
Bài 1. Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = - x2
a) Vẽ parabol (P)
b) Xác định tọa độ các giao điểm A, B của đường thẳng (d): y = - x – 2 và (P).
c) Tìm tọa độ điểm M trên (P) sao cho tam giác MAB cân tại M
Bài 2 Cho parabol (P): y = x2 và đường thẳng (d): y = x + m
CMR: (d) luôn cắt (P) tại 2 điểm phân biệt
a) Giả sử (P) và (d) cắt nhau tại 2 điểm phân biệt có hoành độ x1; x2. Hãy tìm giá trị nhỏ nhất của biểu thức P = khi m thay đổi
Bài 3. Cho parabol (P): y = x2 và đường thẳng (d): y = x + m
Tìm m để đường thẳng (d) cắt (P) tại 2 điểm phân biệt nằm bên phải trục tung
Bài 4. Cho parabol (P): y = x2 và đường thẳng (d): y = x + m
Bài 5. Cho parabol (P): y = x2 và đường thẳng (d): y = mx + 1
Tìm m sao cho (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1; x2 sao cho
Bài 6. Cho parabol (P) : y = x2 và đường thẳng (d) : y = mx -
m2 + m +1.
a) Với m = 1, xác định tọa độ các giao điểm A, B của (d) và (P).
b) Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho .
cho parabol (p) : y=\(-\dfrac{x^2}{2}\)và đường thẳng y=\(-\dfrac{1}{2}x-1\) (d) trên cùng mặt tọa độ .a) vẽ parabol (P) và đường thẳng (d) trên cùng hệ trục tọa độ Oxy
b)tìm tọa độ giao điểm của (p) và (d) bằng phép tính
b: Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{2}x^2=-\dfrac{1}{2}x-1\)
\(\Leftrightarrow-\dfrac{1}{2}x^2+\dfrac{1}{2}x+1=0\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Thay x=2 vào (P), ta được:
\(y=\dfrac{-2^2}{2}=-2\)
Thay x=-1 vào (P), ta được:
\(y=-\dfrac{1^2}{2}=-\dfrac{1}{2}\)
Trong mặt phẳng tọa độ oxy cho parabol p y = x bình và đường thẳng d có dạng y = mx + m+1 a) với m =1 Tìm tọa độ giao điểm của đường thẳng d với hai trục tọa độ b) tính giá trị của m để đường thẳng d cắt parabol p tại 2 điểm phân biệt nằm về bên trái của đường thẳng x = 2
Trên mặt phẳng tọa độ Oxy cho đường thẳng (d) : y = - x + 6 và parabol (P): y = x².
a, Tìm tọa độ các giao điểm của (d) và (P).
b, Gọi A, B là giao điểm của (d) và (P). Tính diện tích tam giác OAB.
câu a: phương trình hoành độ giao điểm x^2= -x+6 <=> x^2 +x-6=0 <=> x=2 và x=-3
toạ độ các giao điểm là A(2;4) và B(-3;9)
câu b: bạn phải vẽ hình ra ta sẽ thấy tam giác OAB là tam giác vuông với 2 cạnh OA và OB là 2 cạnh góc vuông, dựa vào hình vẽ sẽ tính được
tính OA=\(\sqrt{\left(2^2+4^2\right)}\)=\(\sqrt{20}\) và OB=\(\sqrt{\left(\left(-3\right)^2+9^2\right)}\)= \(\sqrt{90}\) sau đó tính diện tích tam giác OAB
S=\(\frac{1}{2}OA\cdot OB=\frac{1}{2}\sqrt{20}\cdot\sqrt{90}\)=\(3\sqrt{50}\)
ngô thị loan tại sao lại có thể nhìn hình để kết luận là tam giác vuông liền được ? mình vẽ đồ thị ra thi có phải tam giác vuông đâu, dùng Pytago thử lại cũng sai ??
Trong mặt phẳng tọa độ Oxy, cho parabol (P): y=x2 và đường thẳng (d): y=2(m-1)x+5-2m (m là tham số)
a) Vẽ đồ thị parabol (P).
b) Biết đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. Gọi hoành độ giao điểm của đường thẳng (d) và parabol (P) là x1, x2. Tìm m để x+x=6
b) Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=2\left(m-1\right)x+5-2m\)
\(\Leftrightarrow x^2-2\left(m-1\right)x-5+2m=0\)
Áp dụng hệ thức Vi-et, ta được:
\(x_1+x_2=2\left(m-1\right)\)
Ta có: \(x_1+x_2=6\)
\(\Leftrightarrow2\left(m-1\right)=6\)
\(\Leftrightarrow m-1=3\)
hay m=4
Vậy: m=4
Cho parabol: \(y=\dfrac{-x^2}{4}\) và đường thẳng y=mx+n. Xác định các hệ số m và n để đường thẳng đi qua điểm (1;2) và tiếp xúc với parabol. Tìm tọa độ tiếp điểm, vẽ đồ thị của parabol và đường thẳng trên cùng 1 hệ trục tọa độ
Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{4}x^2-mx-n=0\)
THeo đề, ta có:
\(\left\{{}\begin{matrix}m+n=2\\\left(-m\right)^2-4\cdot\left(-\dfrac{1}{4}\right)\cdot\left(-n\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\m^2-n=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\n^2-4n+4-n=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n\in\left\{1;4\right\}\\m\in\left\{1;-2\right\}\end{matrix}\right.\)