Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hào
Xem chi tiết
Nguyễn Tôn Gia Kỳ
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 8 2021 lúc 14:14

Do I là trung điểm AB \(\Rightarrow OI\perp AB\)

\(AI=\dfrac{1}{2}AB=3\)

Trong tam giác vuông OAI, áp dụng Pitago:

\(OI=\sqrt{OA^2-AI^2}=\sqrt{R^2-AI^2}=4\)

\(\Rightarrow IM=OM-OI=R-OI=1\)

\(\Rightarrow AM=\sqrt{AI^2+IM^2}=\sqrt{10}\left(cm\right)\)

b.

Vẫn như trên, ta có: \(AI=\dfrac{1}{2}AB=6\)

Do MN là đường kính \(\Rightarrow\Delta MAN\) vuông tại A

Áp dụng hệ thức lượng trong tam giác vuông MAN với đường cao AI:

\(\dfrac{1}{AI^2}=\dfrac{1}{AN^2}+\dfrac{1}{AM^2}\Rightarrow\dfrac{1}{6^2}=\dfrac{1}{10^2}+\dfrac{1}{AM^2}\Rightarrow AM=\dfrac{15}{2}\)

Áp dụng hệ thức lượng:

\(AI.MN=AN.AM\Leftrightarrow MN=\dfrac{AM.AN}{AI}=\dfrac{25}{2}\)

\(\Rightarrow R=\dfrac{MN}{2}=\dfrac{25}{4}\left(cm\right)\)

Nguyễn Việt Lâm
5 tháng 8 2021 lúc 14:14

undefined

illumina
Xem chi tiết
Quang Chính
Xem chi tiết
Bạch Tố Trinh
Xem chi tiết
Trần Tuấn Hoàng
28 tháng 4 2023 lúc 9:28

Xét (O'): \(O'A\perp AB\) tại A và O'A là bán kính.

\(\Rightarrow\)AB là tiếp tuyến của (O') tại A.

\(\Rightarrow\widehat{NAB}\) là góc tạo bởi tiếp tuyến và dây cung chắn cung AN.

Mặt khác \(\widehat{AMN}\) là góc nội tiếp chắn cung AN.

\(\Rightarrow\widehat{AMN}=\widehat{NAB}\left(1\right)\)

Xét (O): \(\widehat{AMC}=\widehat{ABC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\widehat{NAB}=\widehat{ABC}\) nên AN//BC.

leyenphuong
Xem chi tiết
Lê Thị Hồng Thảo
Xem chi tiết
Đỗ Việt Hùng
Xem chi tiết
Nguyễn Huy Tú
13 tháng 10 2021 lúc 12:05

Vì OH vuông với AB => H là trung điểm 

=> AH = HB = AB/2 = 12/2 = 6 cm 

Theo định lí Pytago tam giác AHO vuông tại H ta được : 

\(AO=\sqrt{AH^2+OH^2}=\sqrt{64+36}=10\)cm 

hay R = 10 cm 

Khách vãng lai đã xóa
Sọt
Xem chi tiết
vũ tiền châu
25 tháng 7 2017 lúc 20:30

bộ định bảo mọi người làm hết bài tập cho à