Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Diệp Tử Tinh
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 5 2021 lúc 15:50

\(A=2017+a^2+b^2+c^2\ge2017+\dfrac{1}{3}\left(a+b+c\right)^2=2020\)

\(A_{min}=2020\) khi \(a=b=c=1\)

Việt Hoàng
Xem chi tiết
Trên con đường thành côn...
6 tháng 8 2021 lúc 15:28

undefined

thục khuê nguyễn
Xem chi tiết
Hoang Tran
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2021 lúc 22:30

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\Rightarrow-3\le a+b+c\le3\)

\(S=a+b+c+\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\dfrac{1}{2}\left(a+b+c\right)^2+a+b+c-\dfrac{3}{2}\)

Đặt \(a+b+c=x\Rightarrow-3\le x\le3\)

\(S=\dfrac{1}{2}x^2+x-\dfrac{3}{2}=\dfrac{1}{2}\left(x+1\right)^2-2\ge-2\)

\(S_{min}=-2\) khi \(\left\{{}\begin{matrix}a+b+c=-1\\a^2+b^2+c^2=3\end{matrix}\right.\) (có vô số bộ a;b;c thỏa mãn)

\(S=\dfrac{1}{2}\left(x^2+2x-15\right)+6=\dfrac{1}{2}\left(x-3\right)\left(x+5\right)+6\le6\)

\(S_{max}=6\) khi \(x=3\) hay \(a=b=c=1\)

hotboy2002
Xem chi tiết
nguyen van bi
7 tháng 12 2020 lúc 19:22

bạn kiểm tra lại xem có sai đề không

Khách vãng lai đã xóa
hotboy2002
Xem chi tiết
Trần Cao Cường
Xem chi tiết
Akai Haruma
14 tháng 10 2023 lúc 0:11

Lời giải:

Do $a\geq 4, b\geq 5, c\geq 6$

$\Rightarrow c^2=90-a^2-b^2\leq 90-4^2-5^2=49$

$\Rightarrow c\leq 7$

$a^2=90-b^2-c^2\leq 90-5^2-6^2=29< 81$

$\Rightarrow a< 9$

$b^2=90-a^2-c^2=90-4^2-6^2=38< 64$

$\Rightarrow b< 8$

Vậy $4\leq a< 9, 5\leq b< 8, 6\leq c\leq 7$

Suy ra:

$(a-4)(a-9)\leq 0$

$(b-5)(b-8)\leq 0$

$(c-6)(c-7)\leq 0$

$\Rightarrow (a-4)(a-9)+(b-5)(b-8)+(c-6)(c-7)\leq 0$

$\Rightarrow a^2+b^2+c^2+118\leq 13(a+b+c)$

$\Rightarrow 90+208\leq 13P$
$\Rightarrow P\geq 16$

Vậy $P_{\min}=16$. Giá trị này đạt tại $(a,b,c)=(4,5,7)$

Nguyễn Thế Hiếu
Xem chi tiết
Akai Haruma
29 tháng 3 2021 lúc 21:26

Lời giải:

Đặt $a+b+c=p; ab+bc+ac=q=1; abc=r$

$p,r\geq 0$

Áp dụng BĐT AM-GM: $p^2\geq 3q=3\Rightarrow p\geq \sqrt{3}$

$a,b,c\leq 1\Leftrightarrow (a-1)(b-1)(c-1)\leq 0$

$\Leftrightarrow p+r\leq 2\Rightarrow p\leq 2$

$P=\frac{(a+b+c)^2-2(ab+bc+ac)+3}{a+b+c-abc}=\frac{(a+b+c)^2+1}{a+b+c-abc}=\frac{p^2+1}{p-r}$

Ta sẽ cm $P\geq \frac{5}{2}$ hay $P_{\min}=\frac{5}{2}$

$\Leftrightarrow \frac{p^2+1}{p-r}\geq \frac{5}{2}$

$\Leftrightarrow 2p^2-5p+2+5r\geq 0(*)$

---------------------------

Thật vậy:

Áp dụng BĐT Schur thì:

$p^3+9r\geq 4p\Rightarrow 5r\geq \frac{20}{9}p-\frac{5}{9}p^3$

Khi đó:

$2p^2-5p+2+5r\geq 2p^2-5p+2+\frac{20}{9}p-\frac{5}{9}p^3=\frac{1}{9}(2-p)(5p^2-8p+9)\geq 0$ do $p\leq 2$ và $p\geq \sqrt{3}$

$\Rightarrow (*)$ được CM

$\Rightarrow P_{\min}=\frac{5}{2}$

Dấu "=" xảy ra khi $(a,b,c)=(1,1,0)$ và hoán vị

Chanh
Xem chi tiết
Nguyễn Ngọc Lộc
9 tháng 2 2021 lúc 15:56

Ta có : \(P=a^2+b^2+c^2\)

\(\Rightarrow P+2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\)

\(\Rightarrow P+2=\left(a+b+c\right)^2\ge0\)

\(\Rightarrow P\ge-2\)

Vậy MinP = -2 tại a + b + c = 0 .

Hồng Phúc
9 tháng 2 2021 lúc 22:49

Dễ thấy:

\(2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow P\ge ab+bc+ca=1\)

\(minP=1\Leftrightarrow a=b=c=\dfrac{\sqrt{3}}{3}\)

Hồng Phúc
9 tháng 2 2021 lúc 22:51

Cách khác:

Áp dụng BĐT BSC:

\(ab+bc+ca=1\)

\(\Rightarrow1=\left(ab+bc+ca\right)^2\le\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)=\left(a^2+b^2+c^2\right)^2=P^2\)

\(\Rightarrow P\ge1\left(\text{Do }P>0\right)\)

\(minP=1\Leftrightarrow a=b=c=\dfrac{\sqrt{3}}{3}\)