\(A=2017+a^2+b^2+c^2\ge2017+\dfrac{1}{3}\left(a+b+c\right)^2=2020\)
\(A_{min}=2020\) khi \(a=b=c=1\)
\(A=2017+a^2+b^2+c^2\ge2017+\dfrac{1}{3}\left(a+b+c\right)^2=2020\)
\(A_{min}=2020\) khi \(a=b=c=1\)
cho 3 số a b c thỏa mãn a+b+c=2. Tìm giá trị nhỏ nhất của biểu thức a^2+b^2+c^2
Cho 3 số a,b,c thỏa mãn a + b + c = 2. tìm giá trị nhỏ nhất của biểu thức :
A = a+ b+ c
A.
B.
C.
D.
Cho a,b là các số dương thỏa mãn a+b+c=1.Tìm giá trị nhỏ nhất của biểu thức A= a*b+2*b*c+3*c
Cho a,b là các số dương thỏa mãn a+b+c=1.Tìm giá trị nhỏ nhất của biểu thức A= a*b+2*b*c+3*c
Cho các số thực a, b, c thỏa mãn 2.( b2 + bc + c2) = 3.( 3 – a2). Tìm giá trị lớn nhất và nhỏ nhất của biểu thức T = a + b + c
câu1:
a) Cho các số thực không âm a, b, c thỏa mãn a + b + c =1. Tìm giá trị lớn nhất và giá trị nhỏ
nhất của biểu thức:
P=\(\frac{ab+bc+ca-abc}{a+2b+c}\)
b) Cho các số thực a, b, c thỏa mãn \(^{a^2+b^2+c^2=1}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P =ab +bc + ca .
Cho a,b là các số dương thỏa mãn a+b+c=1.
Tìm giá trị nhỏ nhất của biểu thức A= a*b+2*b*c+3*c*a
Cho a,b là các số dương thỏa mãn a+b+c=1.
Tìm giá trị nhỏ nhất của biểu thức A= a*b+2*b*c+3*c
cho a bc là 3 số dương thỏa mãn a+b+c=3 tính giá trị nhỏ nhất của biểu thức : p=a^3/(a^2+b^2) +b^3/(b^2+c^2) +c^3/(c^2+a^2)