Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phúc Thiên
Xem chi tiết
Nguyễn Phúc Thiên
Xem chi tiết
Trần Bảo Minh
16 tháng 1 2022 lúc 21:37

Bó tay. com

Khách vãng lai đã xóa
Nguyễn Tiến Thành
17 tháng 1 2022 lúc 20:51
Ko biết sorry
Khách vãng lai đã xóa
Nguyệt
17 tháng 1 2022 lúc 21:47

ko bít sorry nhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Khách vãng lai đã xóa
Thắng Trịnh
Xem chi tiết
Trần Phúc Khang
5 tháng 5 2019 lúc 6:54

Từ hệ 

=> \(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)=48\)

=> \(\left(x+y\right)\left(y+z\right)\left(x+z\right)-2xyz=48\)

Mặt khác từ hệ 

\(x^2y^2z^2\left(x+y\right)\left(y+z\right)\left(x+z\right)=2160\)

=>\(48+2xyz=\frac{2160}{x^2y^2z^2}\)

=>xyz=6

Khi đó hệ 

<=>\(\hept{\begin{cases}xy\left(x+y\right)=xyz\\yz\left(y+z\right)=2xyz\\xz\left(x+z\right)=5xyz\end{cases}}\)=>\(\hept{\begin{cases}x+y-z=0\\y+z-2x=0\\x+z-5y=0\end{cases}}\)=>\(3x=2z=6y\)=>\(x=2,y=1,z=3\)

Vậy x=2,y=1,z=3

                      

Thanh Tâm
Xem chi tiết
Minh Nguyễn Cao
Xem chi tiết
Nguyễn Linh Chi
10 tháng 8 2019 lúc 15:43

Không mất tính tổng quát.

g/s : \(x\ge y\ge z\)\(\ge1\)

Theo bài ra ta có: \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)⋮xyz\)

=> \(\left(xy^2z+yz+xy+1\right)\left(zx+1\right)⋮xyz\)

=> tồn tại số nguyên dương k sao cho:  \(xy+yz+zx+1=k.xyz\)

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=k\)

=> \(k\le1+1+1+1=4\)(1)

TH1: k = 4  khi đó dấu "=" của bất đẳng thức (1) xảy ra khi và chỉ khi x=y=z=1 (  tm)

TH2: k=3

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=3\)

=>\(3\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z^3}\)

=> \(3\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1 

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=2\)

=> \(2\le\frac{1}{y}+\frac{1}{y}+\frac{1}{y^2}=\frac{2}{y}+\frac{1}{y^2}\)=> y=1

Với z=1; y=1 => \(\frac{1}{x}+\frac{1}{x}=1\Rightarrow x=2\)

Vậy x=2, y=z=1 ( thử vào thỏa mãn)

TH3: k=2

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{zyx}=2\)

=> \(2\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1\)

=> \(1\le\frac{2}{y}+\frac{1}{y^2}\)=> y=2 hoặc y=1

Với y=1 => \(\frac{1}{x}+\frac{1}{x}=0\left(loai\right)\)

Với y=2 => \(\frac{1}{x}+\frac{1}{2x}=\frac{1}{2}\Rightarrow x=3\)

Vậy x=3; y=2; z=1 ( thử vào thỏa mãn)

TH4: K=1

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=1\)

=> \(1\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1 hoặc z=2 hoặc z=3

Với z=1 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=0\)loại

Với \(z=2\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)

=> \(\frac{1}{2}\le\frac{2}{y}+\frac{1}{2y^2}\)=> y=1 (loại), y=2 (loại ); y=3 => x=7 ; y=4 => x= 9/2(loại); y>5 loại

Với z =3   => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3}+\frac{1}{3xy}=1\)=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3xy}=\frac{2}{3}\)

=> \(\frac{2}{3}\le\frac{2}{y}+\frac{1}{3y^2}\)=> y=1 ( loại ), y=2 => x=7 (tm) , y=3 => x=10/3 (loại); y>4 ( loại)

TH này x=7; y=2; z=1 ( thử vào ko thỏa mãn) hoặc x=7; y=3 ; z=1 ( thử vào ko thỏa mãn)

Vậy: (x; y; z)  là bộ ba số (1; 1; 1), (3; 2; 1); (2; 1;1 ) và các hoán vị của chúng

Ps: Cầu một cách ngắn gọn hơn! Thanks

Blue Moon
Xem chi tiết
Dinh Tien Linh
Xem chi tiết
Nguyễn Linh Chi
16 tháng 1 2020 lúc 15:57

Câu hỏi của Minh Nguyễn Cao - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo nhé!

Khách vãng lai đã xóa
Lan Lương Ngọc
Xem chi tiết
Nguyễn Phúc Thiên
Xem chi tiết