Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Phương Linh
Xem chi tiết
Lê Song Phương
23 tháng 11 2023 lúc 20:35

Xét \(p=2\) thì \(2p+1=5;4p+1=9\) không thỏa mãn.

Xét \(p=3\) thì \(2p+1=7;4p+1=13\), thỏa mãn.

Xét \(p>3\) thì \(p=3q+1;p=3q+2\left(q\inℕ^∗\right)\)

Nếu \(p=3q+1\) thì \(2p+1=2\left(3q+1\right)+1=6q+3⋮3\) . Hơn nữa \(6q+3>3\) nên \(2p+1\) là hợp số, không thỏa mãn.

Nếu \(p=3q+2\) thì \(4p+1=4\left(3q+2\right)+1=12q+9⋮3\) . Lại có \(12q+9>3\) nên \(4p+1\) là hợp số, không thỏa mãn.

Vậy \(p=3\) là số nguyên tố duy nhất thỏa mãn ycbt.

Anh Tran
23 tháng 11 2023 lúc 20:30

là p =1

Anh Tran
23 tháng 11 2023 lúc 20:32

1

Cao Thành Nguyên
Xem chi tiết
Akai Haruma
11 tháng 10 2023 lúc 0:00

Lời giải:
Nếu $p\vdots 3$ thì $p=3$. Khi đó $2p+1=7, 4p+1=13$ đều là số nguyên tố (thỏa mãn) 

Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k\in\mathbb{N}^*$

$\Rightarrow 2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$. Mà $2p+1>3$ với mọi $p$ nên $2p+1$ không là snt (trái với giả thiết) - loại.

Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}^*$

$\Rightarrow 4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. mà $4p+1>3$ với mọi $p$ nên không là snt(trái với giả thiết) - loại.

Vậy $p=3$ là đáp án duy nhất.

Nguyễn Phương Nga
Xem chi tiết
Sana .
13 tháng 3 2021 lúc 21:54

b, 

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

Khách vãng lai đã xóa
Trần Khánh Vũ
10 tháng 12 2021 lúc 23:05
10000×2000?
Khách vãng lai đã xóa
Tạ Duy Hưng
12 tháng 11 2023 lúc 19:52

hvnh

Xem chi tiết
👁💧👄💧👁
26 tháng 2 2021 lúc 17:13

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

👁💧👄💧👁
26 tháng 2 2021 lúc 17:19

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

👁💧👄💧👁
26 tháng 2 2021 lúc 17:30

Bài 3:

a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố

p + 8 = 2 + 8 = 10 không là số nguyên tố

Vậy p = 2 không thỏa mãn

 Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố

p + 8 = 3 + 8 = 11 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2

Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố

p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p > 3 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất

Anh Hoàng Dương Minh
Xem chi tiết
Lỗ Thị Thanh Lan
8 tháng 11 2014 lúc 20:12

a; nếu p=3 thì p+2=5 , p+4=7 đều là số nguyên tố

    nếu p>3 thì p có 2 dạng : p=3k+1, p=3k+2

     với p=3k+1 thì p+2=3k+1+2=3k+3 chia hết cho 3 => p+2 là hợp số

    với p=3k+2 thì p+4=3k+2+4=3k+6 '''''''''''''''''''''''''''''''''''''''''''' =>p+4 là hợp số

                         Vậy p=3 thỏa mãn đề bài 

 

     các phần còn lại tương tự

 

hải phạm vũ
Xem chi tiết
Tran Le Khanh Linh
6 tháng 6 2020 lúc 10:38

Vì p là số nguyên tố lớn hơn 3 

=> p có dạng 3k+1; 3k+2 (k\(\inℕ^∗\))

Thay p=3k+1 vào 2p+1 ta có:

2p+1=2(3k+1)+1=6k+2+1=6k+3

Thấy \(\hept{\begin{cases}6k⋮3\\3⋮3\end{cases}\Rightarrow6k+3⋮3}\)

=> 2p+1 là hợp số (loại)

Thay p=3k+2 vào 2p+1 ta có: 

2p+1=2(3k+2)+1=6k+5 là số nguyên tố (chọn)

Với p=3k+2 => 4p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số

Vậy với p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 4 2019 lúc 14:58

Cho p là mt snguyên tlớn hơn 3 và 2p + 1 cũng là mt snguyên t, thì 4p + 1 là snguyên tố hay hp số? Vì sao?

p và 2p+1 nguyên tố

Nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố

Xét p chia hết cho 3

=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3

=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)

=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3

Kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố chia hết cho 3

Nguyễn Minh Đức
Xem chi tiết
Sakuraba Laura
20 tháng 12 2017 lúc 21:20

Vì p là số nguyên tố lớn hơn 3 => p có dạng 3k+1 hoặc 3k+2

Với p = 3k+1 => 2p+1 = 2(3k+1) + 1 = 6k + 2 + 1 = 6k + 3 \(⋮\) 3 và lớn hơn 3

=> 2p+1 là hợp số (loại)

=> p chỉ có dạng 3k+2

Với p = 3k+2 => 4p+1 = 4(3k+2) + 1 = 12k + 8 + 1 = 12k + 9 \(⋮\) 3 và lớn hơn 3

=> 4p+1 là hợp số

Vậy với p là số nguyên tố lớn hơn 3 và 2p+1 cũng là một số nguyên tố thì 4p+1 là hợp số.

Nguyễn Thị Thu Trang
Xem chi tiết
Ngọc Mai
14 tháng 2 2016 lúc 16:07

Vì p là số nguyê tố lớn hơn 3 nên p có 1 trong 2 dạng: 3k+1 và 3k+2

+) nếu p = 3k+1 thì 2p+1 = 6k+3, chia hết cho 3 nên 2p+1 là hợp số(loại)

=>p có dạng 3k+2

=>4p+1 = 12k + 9 , chia hết cho 3

=> 4p+1 là hợp số

Vậy 4p+1 là hợp số