Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuyet Nhi Melody Miku Ho...
Xem chi tiết
Oh Sehun
17 tháng 3 2017 lúc 20:52

Vì mọi phân số của tổng đều nhỏ hơn 1 nên tổng đó nhỏ hơn 1.

k nha

Khánh Vy
Xem chi tiết
Ngo Tung Lam
29 tháng 3 2018 lúc 19:51

Ta có :

\(H=\frac{1}{51}+\frac{1}{52}+\frac{1}{52}+....+\frac{1}{100}\)

\(\Rightarrow H>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\)

\(\Rightarrow H>\frac{1}{100}.50\)

\(\Rightarrow H>\frac{1}{2}\)

Lại có :

\(H=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+.....+\frac{1}{100}\)

\(\Rightarrow H< \frac{1}{51}+\frac{1}{51}+\frac{1}{51}+........+\frac{1}{51}\)

\(\Rightarrow H< \frac{1}{51}.50\)

\(\Rightarrow H< \frac{50}{51}\)

\(\Rightarrow H< 1\)

Vậy \(\frac{1}{2}< H< 1\left(ĐPCM\right)\)

Five centimeters per sec...
Xem chi tiết
ST
10 tháng 5 2017 lúc 11:39

Ta có: \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)(đpcm)

Đặng Thanh Phương
Xem chi tiết
Thanh Tùng DZ
12 tháng 5 2020 lúc 18:42

Ta có :

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

Khách vãng lai đã xóa
Đặng Thanh Phương
12 tháng 5 2020 lúc 20:41

cảm ơn bạn nha

Khách vãng lai đã xóa
Xem chi tiết
ঔ#@↭BTS↭game↭free fire↭@...
5 tháng 3 2020 lúc 20:52

ai giúp mk ik

mk đg cần gấp,còn nhìu đề chx lm

Khách vãng lai đã xóa
Trần Thị Thùy Linh
Xem chi tiết
Bùi Minh Mạnh Trà
19 tháng 4 2016 lúc 14:51

đánh phần ở đâu thế?

Lê Thị Trà MI
Xem chi tiết
Dũng Senpai
13 tháng 8 2016 lúc 21:55

\(A=\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)

Chia A làm 2 phần,mỗi phân 25 số hạng.

\(A>\frac{25.1}{75}+\frac{25.1}{100}\)

\(A>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

Bé hơn em làm tương tự có điều để nguyên cả 50 p/số.

Chúc em học tốt^^

Lê Thị Trà MI
13 tháng 8 2016 lúc 21:59

bạn có thể giải cụ thể hơn cho mình được ko ?

mình chả hiểu gì cả

Bùi Thị Thanh Bình
Xem chi tiết
Zoro Roronoa
2 tháng 10 2015 lúc 23:43

ta có:\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}=\)\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

=\(\left(1+\frac{1}{3}+...+\frac{1}{99}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\) \(-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)\)

=\(\left(1+\frac{1}{3}+...+\frac{1}{99}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)-\) \(2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=\(\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

Nguyễn Ngọc Thanh
Xem chi tiết
nguyễn trường thọ
15 tháng 4 2017 lúc 13:24

44444444444444444444444444444444444444444

Nguyễn Ngọc Thanh
15 tháng 4 2017 lúc 13:24

ngu vảy 

Dũng Lê Trí
27 tháng 6 2018 lúc 21:15

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{100}\right)\)

\(\Leftrightarrow\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(\Leftrightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(\Leftrightarrow\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

Ta có đpcm