Chứng minh bằng phương pháp quy nạp toán học: \(\forall n\in N\)*, n>1; ta có: \(\dfrac{1}{n+1}+\dfrac{1}{n+2}+...+\dfrac{1}{2n}>\dfrac{13}{24}\)
Chứng minh bằng phương pháp quy nạp toán học: \(\forall n\in N\)*, ta luôn có: \(sin^{2n}\alpha+cos^{2n}\alpha\le1\)
Dùng phương pháp quy nạp chứng minh rằng :
\(n^n\ge\left(n+1\right)^{n-1}\forall n\in\)ℕ∗
Chứng minh rằng
\(2^{2^{2n}}+5⋮7\forall n\inℕ\)
Mọi người chứng minh bằng phương pháp quy nạp toán học giùm mình nha
dùng đồng dư đi :v
2^2^2n=16^n
có 16 đồng dư 2 mod 7
=>16^n đồng dư 2 mod 7
=>16^n+5 đồng dư 0 mod 7
Chứng minh rằng:
\(n^n\ge\left(n+1\right)^{n-1}\forall n\inℕ^∗\)
Chứng minh bằng phương pháp quy nạp nhé
Với n = 1 thì \(x^1\ge2.x^0=0\)
Giả sử đẳng thức đúng với n = k nghĩa là : \(x^k\ge\left(k+1\right).x^{k-1}\).
Ta phải chứng minh :
\(x^n\ge\left(n+1\right).x^{n-1}\)đúng với n = k + 1. Ta phải chứng minh \(x^{k+1}\ge\left[\left(k+1\right)+1\right].x^{\left(k-1\right)+1}=\left(k+2\right).x^k\)
\(=\left(x^k.k+2x^k+1\right)-1=\left(x^k+1\right)^2-1\le x^{k+1}\)
Vậy đẳng thức luôn đúng với mọi \(n\inℕ^∗\)
Sử dụng phương pháp quy nạp toán học, chứng minh:
Với n nguyên dương, chứng minh n! ≤nn
\(n=1\Rightarrow1^1\ge1!\) đúng
Giả sử đúng với \(n=k\) hay \(k^k\ge k!\)
Cần chứng minh đúng với \(n=k+1\) hay \(\left(k+1\right)^{k+1}\ge\left(k+1\right)!\)
Ta có:
\(\left(k+1\right)^{k+1}=\left(k+1\right).\left(k+1\right)^k>\left(k+1\right).k^k\ge\left(k+1\right).k!=\left(k+1\right)!\) (đpcm)
Chứng minh bằng phương pháp quy nạp toán học:
\(11^{n+1}+12^{2n-1}⋮133\)
bạn ơi mình có cách làm bài này dễ hơn quy nạp, bạn có thể tham khảo mình :
trước tiên mình cho bạn công thức an-bn chia hết a-b (n tự nhiên,a,b nguyên)và đề trên bạn thiếu n>0 nha , n=0 thì điều cm ko đúng
11n+1+122n-1
=11n+2-1+11n-1.12-11n-1.12+122n-2+1
=121.11n-1+11n-1.12+144n-1.12-11n-1.12
=11n-1(121+12)+12(144n-1-11n-1)
=11n-1.133+12(144n-1-11n-1)
vì 133 chia hết cho 133 suy ra 11n-1.133 chia hết cho 133 (1)
vì n>0 suy ra n-1>=0 suy ra n-1 tự nhiên
vì 144n-1-11n-1 chia hết cho 144-11=133 và n-1 tự nhiên suy ra 144n-1-11n-1 chia hết cho 133 suy ra 12(144n-1-11n-1) chia hết cho 133 (2)
từ (1),(2) suy ra 11n-1.133+12(144n-1-11n-1)chia hết cho 133 suy ra 11n+1+122n-1 chia hết cho 133
Mình thấy quy nạp cũng dễ mà, nhỉ :)))
Chứng minh bằng phương pháp quy nạp toán học:
\(11^{n+1}+12^{2n-1}⋮133\)
Toán lớp 1 hả má ơi
đay là toán lớp 1 hả :)))
Chứng minh các mệnh đề sau bằng phương pháp qui nạp dãy số:
\(1+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\forall n\ge2\)
Dùng phương pháp quy nạp toán học để chứng minh :
A=16^n-15*n-1 chia het cho 225
B=10^n+18*n-28 chia het cho 27