Giúp mình bài này nha:
(a+b)(a^2-ab+b^2)+(a-b)(a^2+ab+b^2) =2a^3
MẤY BẠN GIẢI NHANH GIÚP MÌNH MẤY BÀI TOÁN KHÓ NÀY NHA, MAI MÌNH ĐẾN HẠNG NỘP RỒI:
a) Cho a,b,c >0 thỏa 1/a+1/c=2/b. Chứng ming (a+b)/(2a-b)+ (b+c)/(2c-b) >=4
b) cho a,b >0 và a+b<=1. Chứng minh 1/(a^2+ab) + 1/(b^2+ab) >=4
c) cho a,b,c>0. Chứng minh (a+b+c)(a^2+b^2+c^2)>=9abc
Giải hộ mình bài toán lớp 8 nha. Bài này mình mới học 3 hằng đẳng thức thôi nên chưa hiểu. Cảm ơnnn
(a^2+ab+b^2).(a^2 - ab + b^2) - (a^4+b^4)
Mình không biết đầu bài của bạn là gì nhưng nếu rút gọn thì bạn làm theo cách này nha
(a2+ab+b2).(a2 - ab + b2) - (a4+b4)
= (a2+b2)2-(ab)2-a4-b4
= a4+2(ab)2+b4-(ab)2-a4-b4
= (ab)2
Nếu bạn có gì khó hiểu với lời giải này thì cứ hỏi mình nha
phân tích ra là:(a2+b2-ab)(a2+b2+ab)=(a2+b2)2 - (ab)2 hằng đẳng thức.
=>bất đẳng thức bằng (a2+b2)2 - (ab)2 -(a4+b4)=a4+b4+2a2b2 - (ab)2-(a4+b4)=a2b2.
đề chứng mình gì rứa?
1, (a2+b2+ab)*(a2+b2-abb) -(a4+b4)
<=> (a2+b2)-(ab) 2-a4-b4
<=> a4+2a2b2+b4-a2b2-a4-b4
<=> a2b2
Hàng đẳng thức chỉ cần linh hoạt lên một chút là được rồi -)
C/m rằng a)x^3+y^3-xy(x+y)=(x+y)(x-y)^2
b)x^3-y^3+xy(x-y)=(x-y)(x+y)^2
c)(a+b)(a^2-ab+b^2)+(a-b)(a^2+ab+b^2)=2a^3
d)(a+b)(a^2-ab+b^2)-(a-b)(a^2+ab+b^2)=2b^3
Giúp mk nha chiều nay mk nộp bài rồi . Cảm ơn các bạn rất nhiều
chứng minh cái đống này giúp mình với mai mình nộp rồi
a)(a^4+b^4)(a^6+b^6)<_2(a^10+b^10)
b)a^2/4+2b^2+2c^2+1>=ab-ac+2bc+2b
c)a^2+4b^2+4c^2+4ac>=4ab+8bc
d)4a^4+5a^2>=8a^3+2a-1
Tất cả các câu này đều có thể chứng minh bằng phép biến đổi tương đương:
a.
\(\Leftrightarrow a^{10}+b^{10}+a^4b^6+a^6b^4\le2a^{10}+2b^{10}\)
\(\Leftrightarrow a^{10}-a^6b^4+b^{10}-a^4b^6\ge0\)
\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^6-b^6\right)\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^2+b^2\right)\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
b.
\(\Leftrightarrow\left(\dfrac{a^2}{4}+b^2+c^2-ab+ac-2bc\right)+b^2-2b+1+c^2\ge0\)
\(\Leftrightarrow\left(\dfrac{a}{2}-b+c\right)^2+\left(b-1\right)^2+c^2\ge0\) (luôn đúng)
c.
\(\Leftrightarrow a^2+4b^2+4c^2-4ab-8bc+4ac\ge0\)
\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) (luôn đúng)
d.
\(\Leftrightarrow4a^4-8a^3+4a^2+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\) (luôn đúng)
chưng minh các đẳng thức sau:
a, (a-1).(a-2)+(a-3).(a-4)-(2a^2+5a-34)=24-7a
b, (a-b).(a^2+ab+b^2)-(a+b).(a^2-ab+b^2)= -2b^3
Giúp mình nhé mình đang cần gấp
Chứng minh :a) (a+b) (a^-ab+b^2)+(a-b) (a^2+ab+b^2)=2a^3
B) (a+b)[(a-b^2)+ab]=a^3+b^3
Giúp mình nhé mọi người !!!
a) \(\left(a+b\right)\left(a^2-a\cdot b+b^2\right)+\left(a-b\right)\left(a^2+a\cdot b+b^2\right)\)
\(=a^3+b^3+a^3-b^3=2a^3\)
b)\(\left(a+b\right)\left(\left(a-b\right)^2+ab\right)=\left(a+b\right)\left(a^2-2ab-b^2+ab\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)
GIÚP MÌNH LÀM BÀI NÀY NHA !!
\(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{4}\sqrt{ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)\)VS a,b >=0
chứng minh các đẳng tức sau:
a,(a-1). (a-2)+(a-3). (a-4)-(2a^2+5a-34)=24-7a
b,(a-b).(a^2+ab+b^2)-(a+b).(a^2-ab+b^2)= -2b^3
các bạn làm ơn giúp mình đi mình đang cần gấp
a(b^2+c^2+bc)+b(a^2+c^2+ac)+c(a^2+b^2+ab)
ai giúp mình với mình cần gấp bài này mai nộp rồi
bạn à!
đề bài là giải phương trình trên nhá lúc đánh mình quên mất