cho tam giác ABC cân tại A.trên tia đối của các tia BC vad CB lấy thứ tự điểm D và E sao cho BD=CE
cho tam giác ABC cân tại A.trên tia đối của các tia BC vad CB lấy thứ tự hai điểm D và E sao cho BD=CE
a) chứng minh tam giác ADE cân
b) gọi M là trung điểm của BC. chứng minh AM là tia phân giác của ADE
c)từ B và C kẻ BH,CK theo thứ tự vuông góc với AD và AE (H thuộc AD,K thuộc AE).chứng minh BH=CK
d) chứng minh ba đường thẳng AM,BH,CK gặp nhau tại một điểm
a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC(ΔBAC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
Suy ra: AD=AE(Hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
cho tam giác ABC cân tại A.Trên tia đối của tia BC lấy điểm D sao cho AB=BD.Trên tia đối của tia CB lấy điểm E sao cho AC=CE
a)chứng minh tam giác ABC cân tại và DE=AB+AC+BC
b)tính các góc của tam giác ADE biết góc BAC=32 độ
Cho tam giác ABC cân tại A .Trên tia đối của các tia BC và CB thứ tự lấy các điểm D và E sao cho BD=CE 1) Chứng minh tam giác ADE là tam giác cân 2)Gọi M là trung điểm của BC . Chứng minh AM là tia phân giác của góc DAE 3) Từ B và C kẻ BH và CK thứ tự vuông góc với AD và AE. Chứng minh BH=CK cùng đi qua một điểm
A, xét tam giác ABD và tam giác ACE có
AB = AC ( tam giác ABC cân tại A)
MK Góc ABD + ABC = 180 độ
lại có góc ACE + ACB = 180 độ
mà góc ABC = ACB(tam giác ABC cân tại A)
=> Góc ABD =ACE
BD = CE ( GT )
nên tam giác ABD = tam giác ACE (C-G-C)
=> góc ADB = góc AEC
=> tam giác AED cân tại A
b,xét tam giác DAM và tam giác EAM có
AD = AE ( cm a, )
AM cạnh cung
mk có MB=MC(M TĐ BC) (1)
ta lại có BD = CE ( GT) (2)
từ (1) và (2) ta có
DB+BM =CE + MC
hay DM = ME
nên tam giác DAM = tam giác EAM ( C-C-C )
=> góc MAD = MAE
=>AM ph/G góc DAE
c, xét tam giác BAH và tam giác CAK có
góc BHA=CKA ( = 1 vuông )
AC =AB ( tam giác ABC cân tại A)
góc BAH = CAK ( tam giác ABD = tam giác ACE)
nên tam giác BAH = tam giác CAK ( cạnh huyền góc nhọn )
=> BH = CK
Cho tam giác ABC cân tại A.Trên tia đối của tia BC lấy D,trên tia đối của tia CB lấy E sao cho BD=CE.CMR ADE là tam giác cân
cho tam giác ABC cân tại A.Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD=CE. Kẻ BH vuông góc với AD , kẻ CK vuông góc với AE . Chứng minh rằng :
a) BH=CK
b)tam giác ABH=tam giác ACK
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Chứng minh:
a) tam giác ADE cân
b)Nếu cho thêm Bac = 60 độ và BD = CE = BC . Tính các góc của tam giác ADE
giúp mình với mình đang gấp !!!!
a: Xét ΔADB và ΔAEC có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔADB=ΔAEC
Suy ra: AD=AE
hay ΔADE cân tại A
a)
Chứng minh được tam giác ABD = tam giác ACE (c-g-c) => AD = AE
Từ đó tam giác ADE cân tại A.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE, Chứng minh tam giác ADE cân.
Chứng minh được tam giác ABD = tam giác ACE (c-g-c) => AD = AE
Từ đó tam giác ADE cân tại A.
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
Do đó: ΔABD=ΔACE
=>AD=AE
Cho tam giác ABC cân tại A.Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và E sao cho BD = CE
a) CMR:tam giác ADE cân
b) Gọi M là trung điểm của BC. CMR: AM là tia phân giác của góc DAE và AM vuông góc với DE
c)Từ B và C kẻ BH,CK theo thứ tự vuông góc với AD và AE .CMR: BH=CK
d)CMR:HK//BC
e) Cho HB cắt CK ở N.CMR: A,M,N thẳng hàng
toán lớp 1 mà kinh z ? bọn trẻ lớn nhanh ghê !
e chịu khó gõ link này lên google nhé!
https://h.vn/hoi-dap/question/170176.html
cái này là lớp 6 SURI chỉ chọn lớp 1 cho vui thôi
a) \(\Delta\)ABC cân ở A nên \(\widehat{ABC}=\widehat{ACB}\)mà \(\widehat{ABC}=\widehat{ABD}=90^0,\widehat{ACB}=\widehat{ACE}=90^0\)
=> \(\widehat{ABD}=\widehat{ACE}\)
AB = AC(hai cạnh bên của tam giác cân ABC)
BD = CE(gt)
=> \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)
=> \(\widehat{ADB}=\widehat{AEC}\)
=> AD = AE
=> \(\Delta\)ADE cân ở A
b) Ta có BD = CE(gt)
BM = CM(vì M là trung điểm của BC)
=> BD + BM = CE + CM
=> DM = EM
Xét \(\Delta ADM\)và \(\Delta AEM\)có :
AD = AE(cmt)
DM = EM(cmt)
AM chung
=> \(\Delta\)ADM = \(\Delta\)AEM(c.c.c)
=> \(\widehat{DAM}=\widehat{EAM}\)(hai góc tương ứng)
=> AM là tia phân giác của góc DAE
Ta lại có : \(\Delta\)ADM = \(\Delta\)AEM(c.c.c) => \(\widehat{DAM}=\widehat{EAM}\)(cmt)
=> \(\widehat{DAM}+\widehat{EAM}=180^0\)
=> \(\widehat{DAM}=\widehat{EAM}=90^0\)
hay \(AM\perp DE\)
c) \(\Delta\)BHD và \(\Delta\)CKE có :
BD = CE (gt)
\(\widehat{HDB}=\widehat{KEC}\)(chứng minh trên)
=> \(\Delta\)BHD = \(\Delta\)CKE (ch - gn)
=> BH = CK
d) Xét \(\Delta\)AHB và \(\Delta\)AKC có :
AB = AC(gt)
BH = CK(cmt)
=> \(\Delta\)AHB = \(\Delta\)AHC(ch - cgv)
=> AH = AK
Vì AH = AK nên \(\Delta\)AHK cân ở A,do đó \(\widehat{AHK}=\frac{180^0-\widehat{A}}{2}\)(1)
Vì AD = AE nên \(\Delta\)ADE cân ở A,do đó \(\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\)(2)
Từ (1) và (2) => \(\widehat{AHK}=\widehat{ADE}\)
Mà hai góc này ở vị trí đồng vị của hai đường thẳng DE và HK cắt đường thẳng AD,do đó HK //DE hay HK //BC
e) Xét \(\Delta\)AHN và \(\Delta\)AKN có :
AH = AK(gt)
AN chung
=> \(\Delta\)AHN = \(\Delta\)AKN(ch-cgv)
=> \(\widehat{HAN}=\widehat{KAN}\)
=> AN là phân giác \(\widehat{DAN}\)
Mà AM,AN đều là phân giác của \(\widehat{DAN}\)=> A,M,N thẳng hàng
Bài 3. (3,0 điểm) Cho tam giác ABC cân tại A. Trên tia đối của các tia BC và CB lấy thứ tự hai điểm D và E sao cho BD = CE. Gọi M là trung điểm của BC.
a) Chứng minh rằng tam giác ADE là tam giác cân.
b) Chứng minh AM là tia phân giác của góc DAE.
c) Kẻ BH ⊥ AD và CK ⊥ AE. Chứng minh BH = CK.
d) Chứng minh ba đường thẳng AM, BH và CK đồng quy
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
ΔADE cân tại A
mà AM vuông góc DE
nên AM là phân giác của góc DAE
c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
=>ΔAHB=ΔAKC
=>BH=KC