Tìm số tự nhiên a và b biết :
2a + 124 = 5b
Tìm số tự nhiên a,b biết : 2a+124=5b
Ta có :
2a + 124 = 5b
=> 20 + a + 124 = 50 + b
=> 144 + a = 50 + b
=> a - b = 144 - 55
=> a - b = 89
Mà a - b lớn nhất là 9 - 0 = 9 < 89
=> a,b không tồn tại.
Vậy không tìm được chữ số a,b thỏa mãn đề bài.
các bạn **** tớ đi trả lời đầu tiên mà
Tìm các số tự nhiên a, b biết rằng:
a) 2a + 124 = 5b
b) 3a + 9b = 183
c) 2a + 80 = 3b
a.
Với \(a=0\Rightarrow1+124=5^b\Rightarrow b=3\)
Với \(a>0\Rightarrow2^a\) luôn chẵn \(\Rightarrow2^a+124\) luôn chẵn
Mà \(5^b\) luôn lẻ \(\Rightarrow\) không tồn tại \(a>0\) thỏa mãn
Vậy \(\left(a;b\right)=\left(0;3\right)\)
b.
\(3^a\) và \(9^b\) đều luôn lẻ \(\Rightarrow3^a+9^b\) luôn chẵn
Mà 183 lẻ \(\Rightarrow\) không tồn tại a; b thỏa mãn
c.
\(a=0\Rightarrow1+80=3^b\Rightarrow b=4\)
Với \(a>0\Rightarrow2^a\) chẵn \(\Rightarrow2^a+80\) chẵn
Mà \(3^b\) luôn lẻ \(\Rightarrow\) ko tồn tại \(a>0\) thỏa mãn
Vậy \(\left(a;b\right)=\left(0;4\right)\)
Tìm các số tự nhiên a, b, biết:
a) ab+a+b=5
b) ab+2a+5b=20
c) ab-2a+5b=20
d) ab+3a+6b=60
a) Chứng minh rằng: Nếu 7x+4y chia hết cho 29 thì 9x+y chia hết cho 29 (Với x;y là các số nguyên)
b) Tính giá trị biểu thức:
A= 2a/5b + 5b/6c + 6c/7d + 7d/2a biết 2a/5b = 5b/6c = 6c/7d = 7d/2a và a;b;c;d thuộc các số tự nhiên khác 0
a) Chứng minh rằng: Nếu 7x+4y chia hết cho 29 thì 9x+y chia hết cho 29 (Với x;y là các số nguyên)
b) Tính giá trị biểu thức:
A= 2a/5b + 5b/6c + 6c/7d + 7d/2a biết 2a/5b = 5b/6c = 6c/7d = 7d/2a và a;b;c;d thuộc các số tự nhiên khác 0
nhanh nhất mk tick
xét hiệu:A=4(9x+y)-(7x+4y)
A=36x+4y-7x-4y
A=29x\(\Rightarrow\)A chia hết cho29
mà 7x+4y chia hết cho29\(\Rightarrow\)4(9x+y) chia hết cho 29
vì (4;29)=1\(\Rightarrow\)9x+y chia het cho 29
Vậy nếu 7x+4y chiahet cho 29 thi 9x+y chia hết cho 29
Học tốt!
1. Tìm các số tự nhiên a, b biết \(\left(2a+5b+1\right).\left(2^a+a^2+a+b\right)=105\)
Hai số tự nhiên a và b khi chia cho 2 dư lần lượt là 7 và 4.Tìm số dư khi chia cho 9 của 2a,3a,a+b,a.b,6a+5b,a2+b2.
Bài 1: Tìm chữ số tận cùng của các các tổng sau:
a) A = 21 + 35 + 49 + 513 + .... + 20238085
b) B = 23 + 37 + 411 + ... + 20238087
Bài 2: Tìm số tự nhiên a, b biết:
a) 2a + 154 = 5b b) 10a + 168 = b2
Bài 3: Chứng minh rằng các tổng sau không thể là số chính phương (Gợi ý: để ý chữ số tận cùng)
a) M = 19k + 5k + 1995k + 1996k (với k chẵn)
b) N = 20042004k + 2003
Bài 4: Chứng minh rằng:
a) 55 - 54 + 53 chia hết cho 7
b) 76 + 75 - 74 chia hết cho 11
c) 1 + 2 + 22 + 23 + ... + 2119 chia hết cho 7
d) 1 + 2 + 22 + 23 + ... + 2239 chia hết cho 105
e) 3n+2 - 2n+2 + 3n - 2n chia hết cho 10 với mọi số nguyên dương n
Bài 2 :
a) \(2^a+154=5^b\left(a;b\inℕ\right)\)
-Ta thấy,chữ số tận cùng của \(5^b\) luôn luôn là chữ số \(5\)
\(\Rightarrow2^a+154\) có chữ số tận cùng là \(5\)
\(\Rightarrow2^a\) có chữ số tận cùng là \(1\) (Vô lý, vì lũy thừa của 2 là số chẵn)
\(\Rightarrow\left(a;b\right)\in\varnothing\)
b) \(10^a+168=b^2\left(a;b\inℕ\right)\)
Ta thấy \(10^a\) có chữ số tận cùng là số \(0\)
\(\Rightarrow10^a+168\) có chữ số tận cùng là số \(8\)
mà \(b^2\) là số chính phương (không có chữ số tận cùng là \(8\))
\(\Rightarrow\left(a;b\right)\in\varnothing\)
Bài 3 :
a) \(M=19^k+5^k+1995^k+1996^k\left(với.k.chẵn\right)\)
Ta thấy :
\(5^k;1995^k\) có chữ số tận cùng là \(5\) (vì 2 số này có tận cùng là \(5\))
\(\Rightarrow5^k+1995^k\) có chữ số tận cùng là \(0\)
mà \(1996^k\) có chữ số tận cùng là \(6\) (ví số này có tận cùng là số \(6\))
\(\Rightarrow5^k+1995^k+1996^k\) có chữ số tận cùng là chữ số \(6\)
mà \(19^k\left(k.chẵn\right)\) có chữ số tận cùng là số \(1\)
\(\Rightarrow M=19^k+5^k+1995^k+1996^k\) có chữ số tận cùng là số \(7\)
\(\Rightarrow M\) không thể là số chính phương.
b) \(N=2004^{2004k}+2003\)
Ta thấy :
\(2004k=4.501k⋮4\)
mà \(2004\) có chữ số tận cùng là \(4\)
\(\Rightarrow2004^{2004k}\) có chữ số tận cùng là \(6\)
\(\Rightarrow N=2004^{2004k}+2003\) có chữ số tận cùng là \(9\)
\(\Rightarrow N\) có thể là số chính phương (nên câu này bạn xem lại đề bài)
Bài 4 :
a) \(5^5-5^4+5^3\)
\(=5^3.\left(5^2-5-1\right)\)
\(=5^3.19\) không chia hết cho 7 (bạn xem lại đề)
b) \(7^6+7^5-7^4\)
\(=7^4.\left(7^2+7-1\right)\)
\(=7^4.\left(49+7-1\right)\)
\(=7^4.55=7^4.11.5⋮11\)
\(\Rightarrow dpcm\)
c) \(1+2+2^2+2^3+...+2^{119}\)
\(=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{117}\left(1+2+2^2\right)\)
\(=7+2^3.7+...+2^{117}.7\)
\(=7.\left(1+2^3+...+2^{117}\right)⋮7\)
\(\Rightarrow dpcm\)
e) \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^{n+2}+3^n-2^{n+2}-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
Ta thấy : \(3^n.10⋮10\)
Ta lại có : \(2^n\) có chữ số tận cùng là số chẵn
\(\Rightarrow2^n.5\) có chữ số tận cùng là số \(0\)
\(\Rightarrow2^n.5⋮10\)
Vậy \(3^n.10-2^n.5⋮10\left(dpcm\right)\)
Tìm số tự nhiên a nhỏ nhất, biết rằng
a) 120 \(⋮\) a và 150 \(⋮\) a
b) 124 \(⋮\) a và 144 \(⋮\) a
a,Số tự nhiên a nhỏ nhất là 3 vì 120 và 150 đều chia hết cho 3
b,số tự nhiên a nhỏ nhất là 2 vì 124 và 144 đều chia hết cho 2
a) \(120⋮a;150⋮a\)
\(\Rightarrow a\in BCNN\left(120;150\right)=2^3.3.5^2=600\) thỏa đề bài
b) \(124⋮a;144⋮a\)
\(\Rightarrow a\in BCNN\left(124;144\right)=2^4.3^2.31=4464\) thỏa đề bài
Bài 1: Tính giá trị của biểu thức:
a) A = x3 + 12x2y + 48xy2 - 64y3 biết x - y = 1 và 3x = 2y.
b) B = 2a - 3b/3b - 2a biết 6a = 5b.
c) C = 2a + b/a + 124 - a + 2b/b + 124 biết a + b = 124; a,b khác -124.
d) D = |x - 2| + x - y/x + y biết |x - 2| + (y - 1)2 = 0.