Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phúc Thiên
Xem chi tiết
Tiến Dũng Trương
11 tháng 7 2017 lúc 21:10

câu a)

nhân cả 3 phương trình

ta được

\(x^2y^2z^2=6\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)

Vế trái là 1 số chính phương nên Vp cũng là số chính phương

6 không phải là số chính phương nên

\(\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)=6

lập bảng 

đặt x+y-z=1 ; x-y+z=2; y-x+z=3 giải ra và tương tự xét các cái còn lại (hơi lâu) nhớ xét thêm cái âm nữa

câu b)

từ hpt =>5y+3=11z+7

<=>\(y=\frac{11z+4}{5}\)>0 với mọi y;z thuộc R

y  nguyên dương nên (11z+4)thuộc bội(5) và z_min

=> z=1 

=> y=3

=> x =18 (t/m)

câu c)

qua pt (1) =>x=20-2y-3z

thay vao 2) <=> y+5z=23

y;z là nguyên dương mà 5z chia hêt cho 5 

=> z={1;2;3;4}

=> y={18;13;8;3}

=> x={-19;-12;-5;2} đoạn này bạn làm từng GT của z nhé

chọn x=2; y=3; z=4 (t/m)

Nếu có sai sót hãy báo lại qua gmail: tiendung230103@gmail.com

Nguyễn Phúc Thiên
11 tháng 7 2017 lúc 21:38

Bạn giải nốt giùm mình câu a được ko?

Nguyễn Phúc Thiên
Xem chi tiết
Trần Bảo Minh
16 tháng 1 2022 lúc 21:37

Bó tay. com

Khách vãng lai đã xóa
Nguyễn Tiến Thành
17 tháng 1 2022 lúc 20:51
Ko biết sorry
Khách vãng lai đã xóa
Nguyệt
17 tháng 1 2022 lúc 21:47

ko bít sorry nhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Khách vãng lai đã xóa
Blue Moon
Xem chi tiết
Thanh Tâm
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Trần Nguyễn Linh Ngọc
2 tháng 12 2021 lúc 14:04

Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2}      (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
        [2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2}  thì xy đạt giá trị nhỏ nhất.

Khách vãng lai đã xóa
Thắng Trịnh
Xem chi tiết
Trần Phúc Khang
5 tháng 5 2019 lúc 6:54

Từ hệ 

=> \(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)=48\)

=> \(\left(x+y\right)\left(y+z\right)\left(x+z\right)-2xyz=48\)

Mặt khác từ hệ 

\(x^2y^2z^2\left(x+y\right)\left(y+z\right)\left(x+z\right)=2160\)

=>\(48+2xyz=\frac{2160}{x^2y^2z^2}\)

=>xyz=6

Khi đó hệ 

<=>\(\hept{\begin{cases}xy\left(x+y\right)=xyz\\yz\left(y+z\right)=2xyz\\xz\left(x+z\right)=5xyz\end{cases}}\)=>\(\hept{\begin{cases}x+y-z=0\\y+z-2x=0\\x+z-5y=0\end{cases}}\)=>\(3x=2z=6y\)=>\(x=2,y=1,z=3\)

Vậy x=2,y=1,z=3

                      

Lan Lương Ngọc
Xem chi tiết
Nguyễn Phúc Thiên
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết