Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Sơn
Xem chi tiết
alibaba nguyễn
5 tháng 2 2017 lúc 22:02

Ta có: 

a2(b - c) + b2(c - a) + c2(a - b)

= (a - b)(c - a)(c - b)

Ta lại có:

a4(b2 - c2) + b4(c2 - a2) + c4(a2 - b2)

= (a - b)(c - a)(c - b)(a +b)(b + c)(c + a)

Từ đây ta có phân số ban đầu sẽ bằng 

\(\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)\left(c-a\right)\left(c-b\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Nguyễn Phương Uyên
5 tháng 2 2017 lúc 21:55

kc cho mh nhé.

=a 3 + 

b+ 5c

vegeto
6 tháng 2 2017 lúc 20:06

a2 (b-c) + b2 (c -a ) +  c2 ( a - b )

= ( a -b ) ( c-a ) (c-b)

Ta lại có : 

a4  ( b2  -  c2 )  +  b4 ( c2 - a2 ) + c ( a2 -b2 )

= ( a-b) (c-a) (c-b) (a+b) (b+c) (c+a)

từ đây ta có phân số ban đầu sẽ bằng

                                                                                                ( a-b) (c-a) (c-b)                                                                                            1                                                                                                                                                                                                       =                                                                                                                                                                                                                                                                                                                                                                  (a-b) (c-a) ( c-b) (a+b)(b+c) (c+a)                                             (a+b) (b+c)(c+a)

Trương Đình Phúc Phúc
Xem chi tiết
Pham Van Hung
22 tháng 9 2018 lúc 16:42

Đặt \(b-c=x,c-a=y,a-b=z\)

\(\Rightarrow x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

\(\Rightarrow\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3=3\left(b-c\right)\left(c-a\right)\left(a-b\right)\)(1)

Ta có: 

    : \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)+b^2\left(c-b+b-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)+b^2\left(c-b\right)+b^2\left(b-a\right)+c^2\left(a-b\right)\)

\(=\left(b-c\right)\left(a^2-b^2\right)+\left(a-b\right)\left(c^2-b^2\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)+\left(a-b\right)\left(c-b\right)\left(c+b\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(a+b-c-b\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(a-c\right)\)(2)

Từ (1) và (2) giá trị biểu thức cần tìm là -3.

Chúc bạn học tốt

Ann Ann
Xem chi tiết
Big City Boy
Xem chi tiết
༺ミ𝒮σɱєσиє...彡༻
Xem chi tiết
ILoveMath
13 tháng 11 2021 lúc 14:25

a.\(=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2ab-2bc-2ac-2\left(a^2+2ab+b^2\right)=2a^2+2b^2+2c^2+4ab-2a^2-2ab-2b^2=2c^2+2ab\)

b. \(=\left(a^2+b^2-c^2-a^2+b^2-c^2\right)\left(a^2+b^2-c^2+a^2-b^2+c^2\right)=\left(2b^2-2c^2\right).2a^2=4a^2\left(b^2-c^2\right)=4a^2b^2-4a^2c^2\)

nguyễn ngọc phương linh
Xem chi tiết
Long O Nghẹn
Xem chi tiết

Ta có \(P=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2-ab+b^2+b^2-bc+c^2+c^2-ac+a^2}\)

\(=\frac{5\left(...\right)}{2\left(...\right)}=\frac{5}{2}\)

titanic
Xem chi tiết
alibaba nguyễn
14 tháng 10 2017 lúc 14:33

Sửa đề cho nó đẹp

\(\frac{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}\)

\(=\frac{3\left(a-b\right)\left(a-c\right)\left(c-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=-3\)

Moon
3 tháng 11 2018 lúc 11:23

em ms hok lớp 1

Mai Ngoc
Xem chi tiết
Nguyễn Trần Tuyết Liên
19 tháng 12 2016 lúc 14:47

a) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)

\(=\frac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{ab^2-b^3-ac^2+bc^2}\)

\(=\frac{\left(a^2b-b^2a\right)+\left(b^2c-a^2c\right)+c^2\left(a-b\right)}{b^2\left(a-b\right)-c^2\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)+c\left(b^2-a^2\right)+c^2\left(a-b\right)}{\left(b^2-c^2\right)\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(b-c\right)\left(b+c\right)\left(a-b\right)}\)

\(=\frac{ab-c\left(a+b\right)+c^2}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{ab-ac+c^2-bc}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a\left(b-c\right)-c\left(b-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{\left(b-c\right)\left(a-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a-b}{b+c}\)

Nguyễn Trần Tuyết Liên
19 tháng 12 2016 lúc 14:54

Sửa lại: \(\frac{a-c}{b+c}\)